Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
ектор по образовательной	Ди	
деятельности		
С.Т. Князев		
С.1. Киизсы	>>>	

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1165812	Функции Грина

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Физика высокоэнергетических процессов	1. 14.04.02/33.02
Направление подготовки	Код направления и уровня подготовки
1. Ядерные физика и технологии	1. 14.04.02

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Кашин Илья Владимирович	кандидат физико- математических наук, без ученого звания	Доцент	технической физики

Согласовано:

Управление образовательных программ

Р.Х. Токарева

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Функции Грина

1.1. Аннотация содержания модуля

В модуле «Функции Грина» рассматриваются функции Грина при нулевой температуре, запаздывающая и опережающая функции Грина. Дается определение функций Грина многочастичной системы. Изучаются функция Грина при конечной температуре и ряды возмущений и диаграммная техника для температурных функций Грина, теория линейного отклика, формулы Кубо, флуктуационно-диссипативная теорема. Определенное внимание уделяется неравновесным функциям Грина. Неравновесная причинная функция Грина: определение. Контурное упорядочение и три дополнительные неравновесные гриновские функции. В практическом аспекте рассматириваются методы квантовой теории поля в сверхпроводимости. В том числе функции Грина сверхпроводника: формализм Намбу-Горькова, матричная структура теории, элементы теории сильной связи, уравнения Горькова для гриновских функций, токопроводящее состояние сверхпроводника, разрушение током сверхпроводимости, Андреевское отражение.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Функции Грина	3
	ИТОГО по модулю:	3

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	Не предусмотрены
Постреквизиты и кореквизиты	Не предусмотрены
модуля	

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Функции Грина ПК-4 - Способен самостоятельно осваивать и применять современные		3-1 - Формулировать научную проблематику в области ядерной физики и технологий

математические методы исследования, анализа и обработки данных, научно- исследовательскую, измерительно- аналитическую и технологическую аппаратуру в области ядерной физики и технологий	3-2 - Характеризовать цели и задачи производимых исследований 3-3 - Описывать методы и средства математической обработки результатов расчетных и экспериментальных данных У-1 - Анализировать новую научную проблематику соответствующей области знаний У-2 - Применять методы математической и графической обработки результатов исследования, анализа и обработки данных П-1 - Обоснованно предлагать новые
	направления исследований и анализа в области ядерной физики и технологий П-2 - Иметь практические навыки экспертной оценки результатов исследовательских работ и применения современных методов исследования
ПК-5 - Способен разрабатывать и применять математические модели процессов и объектов в своей предметной области, анализ технических и расчетнотеоретических разработок	3-1 - Объяснить выбор математической модели для проведения анализа технических и расчетно-теоретических разработок 3-2 - Объяснить методики проведения исследований и разработок У-1 - Обработать и анализировать результаты проведенного анализа технических и расчетно-теоретических разработок
	У-2 - Применять математические модели процессов и объектов в своей предметной области П-1 - Иметь практические навыки составления научно-технической и другой служебной документации П-2 - Иметь практические навыки применения различных методов физических исследований в избранной предметной области: экспериментальных методов, статистических

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Функции Грина

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Кашин Илья	кандидат физико-	Доцент	технической
	Владимирович	математических наук, без ученого		физики
		звания		

Рекомендовано учебно-методическим советом института Физико-технологический

Протокол № $_{7}$ от $_{15.03.2024}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Кашин Илья Владимирович, Доцент, технической физики
 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
1	Основные положения	Пропагаторы. Интегралы по траектории (функциональные интегралы). Теория возмущений для пропагатора.
2	Функции Грина при нулевой температуре	Определение функций Грина многочастичной системы. Невозмущенные функции Грина. Аналитические свойства функций Грина. Запаздывающая и опережающая функции Грина. Возбуждения квазичастиц, запаздывающие и опережающие функции Грина. Соотношения Крамерса-Кронига. Функция Грина и наблюдаемые. Теория возмущений: диаграммы Фейнмана. Правила Фейнмана. Теоремы Вика и сокращения. Операции с диаграммами. Собственно-энергетическая функция. Уравнение Дайсона. Перенормировка взаимодействия. Поляризационный оператор. Экранирование кулоновского взаимодействия. Самосогласованная теория возмущений. Многочастичные функции Грина. Вершинная функция
3	Функции Грина при конечной температуре	Статистический оператор (матрица плотности). Уравнение Лиувилля. Определение и аналитические свойства гриновских функций. Уравнение Блоха. Температурная (мацубаровская) функция Грина. Ряды возмущений и диаграммная техника для температурных функций Грина

4	Теория линейного отклика	Неравновесная причинная функция Грина: определение. Контурное упорядочение и три дополнительные неравновесные гриновские функции. Формализм Келдыша. Уравнения Дайсона для неравновесных функций Грина. Квантовое кинетическое уравнение. Приложение: электропроводность квантовых точечных контактов. Метод туннельного гамильтониана
5	Методы квантовой теории поля и сверхпроводимость	Сверхпроводящее состояние. Нестабильность нормального состояния. Гамильтониан спаривания (БКШ). Функции Грина сверхпроводника. Формализм Намбу-Горькова. Матричная структура теории. Элементы теории сильной связи. Уравнения Горькова для гриновских функций. Токопроводящее состояние сверхпроводника. Разрушение током сверхпроводимости. Андреевское отражение

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Функции Грина

Электронные ресурсы (издания)

- 1. Абрикосов, А. А.; Методы квантовой теории поля в статистической физике; Физматгиз, Москва; 1962; https://biblioclub.ru/index.php?page=book&id=483334 (Электронное издание)
- 2. Каданов, Л., Л., Зубарев, Д. Н.; Квантовая статистическая механика: методы функций Грина в теории равновесных и неравновесных процессов; Мир, Москва; 1964; https://biblioclub.ru/index.php?page=book&id=482827 (Электронное издание)
- 3. Маттук, Р., Р.; Фейнмановские диаграммы в проблеме многих тел; Мир, Москва; 1969; https://biblioclub.ru/index.php?page=book&id=483384 (Электронное издание)
- 4. Балеску, Р., Р.; Равновесная и неравновесная статистическая механика : учебное пособие.; Мир, Москва; 1978; https://biblioclub.ru/index.php?page=book&id=495472 (Электронное издание)

Печатные издания

- 1. Маттук, Р. Д., Ричард Д., Бонч-Бруевич, В. Л., Краско, Г. Л., Сурис, Р. А.; Фейнмановские диаграммы в проблеме многих тел; Мир, Москва; 1969 (7 экз.)
- 2. Ландау, Л. Д.; Теоретическая физика: Учеб. пособие для физ. спец. ун-тов: В 10 т. Т. 5. Статистическая физика, ч.1. 4-е изд., испр.; Наука, Москва; 1995 (25 экз.)

3. Балеску, Р., Зубарев, Д. Н., Климонтович, Ю. Л.; Равновесная и неравновесная статистическая механика: в 2 томах Т. 1.; Мир, Москва; 1978 (17 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Полнотекстовая БД American Chemical Society (http://pubs.acs.org/).
- 2. Полнотекстовая БД American Institute of Physics (http://scitation.aip.org/).
- 3. Полнотекстовая БД American Physical Society (https://journals.aps.org/about).
- 4. Полнотекстовая БД Annual Reviews Science Collection (http://www.annualreviews.org).
- 5. Полнотекстовая БД Applied Science & Technology Source (http://search.ebscohost.com).
- 6. Полнотекстовая БД eLibrary научная электронная библиотека (http://elibrary.ru).
- 7. Реферативная БД INSPEC. EBSCO publishing (http://search.ebscohost.com/).
- 8. Полнотекстовая БД Institute of Physics (IOP) (http://iopscience.iop.org/).
- 9. Библиографическая БД Journal Citation Reports (JCR). Web of Science (http://apps.webofknowledge.com/).
- 10. Полнотекстовая БД Nature (https://www.nature.com/siteindex).
- 11. Полнотекстовая БД Optical Society of America (OSA) (https://www.osapublishing.org/about.cfm).
- 12. Полнотекстовая БД Questel Patent (https://www.orbit.com/).
- 13. Полнотекстовая БД Science AAAS (American Association for the Advancement of Science) (http://www.sciencemag.org/).
- 14. Полнотекстовая БД ScienceDirect Freedom Collection (http://www.sciencedirect.com/).
- 15. Реферативная БД Scopus (http://www.scopus.com/).
- 16. Полнотекстовая БД Springer Materials (https://materials.springer.com/).
- 17. Полнотекстовая БД Springer Nature Experiments (https://experiments.springernature.com/).
- 18. Полнотекстовая БД SpringerLink (https://link.springer.com/).
- 19. Реферативная БД Web of Science Core Collection (http://apps.webofknowledge.com/).
- 20. Полнотекстовая БД Wiley Journal Database (http://onlinelibrary.wiley.com/).

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Министерство образования и науки Российской Федерации (http://минобрнауки.рф/).
- 2. Федеральный портал «Российское образование» (http://www.edu.ru/).

- 3. ООО Научная электронная библиотека (http://elibrary.ru/defaultx.asp).
- 4. Зональная научная библиотека УрФУ(http://lib.urfu.ru).
- 5. Электронный научный архив УрФУ (https://elar.urfu.ru).

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Функции Грина

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в	Office Professional 2003 Win32 Russian CD-ROM

соответствии с количеством студентов	
Персональные компьютеры по количеству обучающихся	
Подключение к сети Интернет	