Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
ектор по образовательной	Ди	
деятельности		
С.Т. Князев		
С.1. КПИЗСВ	>>>	

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1164412	Физика магнитных материалов

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Физика	1. 03.03.02/33.01
Направление подготовки	Код направления и уровня подготовки
1. Физика	1. 03.03.02

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Бострем Ирина Геннадьевна	кандидат физико- математических наук, доцент	Доцент	теоретической и математической физики
2	Васьковский Владимир Олегович	доктор физико- математических наук, профессор	Заведующий кафедрой	магнетизма и магнитных наноматериалов
3	Катаев Василий Анатольевич	кандидат физико- математических наук, доцент	Доцент	магнетизма и магнитных наноматериалов
4	Незнахин Дмитрий Сергеевич	кандидат физико- математических наук, без ученого звания	Доцент	магнетизма и магнитных наноматериалов
5	Степанова Елена Александровна	кандидат физико- математических наук, доцент	Доцент	магнетизма и магнитных наноматериалов

Согласовано:

Управление образовательных программ

Е.С. Комарова

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Физика магнитных материалов

1.1. Аннотация содержания модуля

В модуль входят дисциплины «Доменная структура и процессы перемагничивания», «Резонансные и релаксационные явления в магнетиках», «Квантовая теория магнетизма», «Физическое материаловедение», «Экспериментальные методы в магнетизме». В таком сочетании они формируют целостное представление о физике, технологиях получения и сферах применения основных типов магнитных материалов. В течение нескольких семестров студенты изучают основы квантовой теории магнитоупорядоченного состояния, физические закономерности формирования функциональных свойств магнитных материалов, включая наноматериалы, методики измерения этих свойств.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Доменная структура и процессы перемагничивания	3
2	Физическое материаловедение	3
3 Экспериментальные методы в магнетизме		2
4	Квантовая теория магнетизма	4
5	Резонансные и релаксационные явления в магнетиках	4
	ИТОГО по модулю:	16

1.3.Последовательность освоения модуля в образовательной программе

•	
1.	Общая физика
2.	Общий физический практикум
3.	Магнетизм конденсированного состояния
Не пред	дусмотрены
	2. 3.

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин компетенции 1 2		Планируемые результаты обучения (индикаторы)
		3
Доменная ОПК-1 - Способен использовать фундаментальные перемагничиван ия области математических и естественных наук, в профессиональной		3-2 - Интерпретировать основные теоретические положения фундаментальных разделов естественных наук, необходимые для освоения компетенций по профилю деятельности У-2 - Анализировать результаты наблюдений и экспериментов с
	деятельности	использованием знаний фундаментальных разделов естественных наук и объективных законов природы
		П-2 - Демонстрировать навыки использования основных естественнонаучных законов, теорий и принципов в важнейших практических приложениях
		Д-1 - Демонстрировать навыки самообразования
	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения	3-1 - Знать основные методы теоретических и экспериментальных физических исследований
		У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы
	профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	П-1 - Предлагать использование методов теоретических и экспериментальных физических исследований при решении поставленных задач
Квантовая теория магнетизма	использовать	3-2 - Интерпретировать основные теоретические положения фундаментальных разделов естественных наук, необходимые для освоения компетенций по профилю деятельности
	и естественных наук, в профессиональной деятельности	У-1 - Определять пути решения задач профессиональной деятельности, опираясь на знания основных закономерностей, законов, теории математики

		П-2 - Демонстрировать навыки использования основных естественнонаучных законов, теорий и принципов в важнейших практических приложениях Д-1 - Демонстрировать навыки самообразования
	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	3-1 - Знать основные методы теоретических и экспериментальных физических исследований У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы П-1 - Предлагать использование методов теоретических и экспериментальных физических исследований при решении поставленных задач
Резонансные и релаксационные явления в магнетиках	ОПК-1 - Способен использовать фундаментальные знания, полученные в области математических и естественных наук, в профессиональной деятельности	3-2 - Интерпретировать основные теоретические положения фундаментальных разделов естественных наук, необходимые для освоения компетенций по профилю деятельности У-2 - Анализировать результаты наблюдений и экспериментов с использованием знаний фундаментальных разделов естественных наук и объективных законов природы П-2 - Демонстрировать навыки использования основных естественнонаучных законов, теорий и принципов в важнейших практических приложениях Д-1 - Демонстрировать навыки самообразования
	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики	3-1 - Знать основные методы теоретических и экспериментальных физических исследований У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы П-1 - Предлагать использование методов теоретических и экспериментальных

	магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	физических исследований при решении поставленных задач
Физическое материаловедени e	ОПК-1 - Способен использовать фундаментальные знания, полученные в области математических и естественных наук, в профессиональной деятельности	3-2 - Интерпретировать основные теоретические положения фундаментальных разделов естественных наук, необходимые для освоения компетенций по профилю деятельности У-2 - Анализировать результаты наблюдений и экспериментов с использованием знаний фундаментальных разделов естественных наук и объективных законов природы П-2 - Демонстрировать навыки использования основных естественнонаучных законов, теорий и принципов в важнейших практических приложениях Д-1 - Демонстрировать навыки самообразования
	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	3-1 - Знать основные методы теоретических и экспериментальных физических исследований У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы П-1 - Предлагать использование методов теоретических и экспериментальных физических исследований при решении поставленных задач
Эксперименталь ные методы в магнетизме	ОПК-1 - Способен использовать фундаментальные знания, полученные в области математических и естественных наук, в профессиональной деятельности	3-2 - Интерпретировать основные теоретические положения фундаментальных разделов естественных наук, необходимые для освоения компетенций по профилю деятельности У-1 - Определять пути решения задач профессиональной деятельности, опираясь

	на знания основных закономерностей, законов, теории математики
	У-2 - Анализировать результаты наблюдений и экспериментов с использованием знаний фундаментальных разделов естественных наук и объективных законов природы
	П-2 - Демонстрировать навыки использования основных естественнонаучных законов, теорий и принципов в важнейших практических приложениях
	Д-1 - Демонстрировать навыки самообразования
ПК-1 - Способен использовать знания фундаментальных	3-1 - Знать основные методы теоретических и экспериментальных физических исследований
разделов общей и теоретической физики для решения	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы
профессиональных задач в области физики магнитных явлений, медицинской и	П-1 - Предлагать использование методов теоретических и экспериментальных физических исследований при решении поставленных задач
теоретической физики, физики конденсированного состояния	

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Доменная структура и процессы перемагничивания

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Васьковский Владимир	доктор физико-	Заведующий	магнетизма и
	Олегович	математических	кафедрой	магнитных
		наук, профессор		наноматериалов

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № _7_ от _29.09.2023_ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Васьковский Владимир Олегович, Заведующий кафедрой, магнетизма и магнитных наноматериалов
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;
Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение	Основные физические характеристики магнетиков, определяющие качественные и количественные параметры процессов намагничивания и перемагничивания.
P2	Намагничивание монокристаллов	Кривые намагничивания неограниченных монокристаллов гексагональной и кубической симметрии вдоль основных кристаллографических направлений. Намагничивание пластины одноосного магнетика путём смещения доменных границ. Кривые намагничивания эллипсоидального магнитоодноосного образца при учёте вращения намагниченности и смещения доменных границ. Изотропный двухподрешёточный ферримагнетик: кривая намагничивания; магнитные фазовые переходы, индуцированные магнитным полем; фазовая Т-Н диаграмма. Кривая намагничивания трёхподрешёточного ферримагнетика. Магнитоодноосный антиферромагнетик: кривые намагничивания вдоль и перпендикулярно оси лёгкого намагничивания (ОЛН). Характер намагничивания вдоль ОЛН в зависимости от соотношения величин обменного взаимодействия и магнитной анизотропии. Метамагнетики. Зонные магнетики в сильном магнитном поле.

	T	
Р3	Намагничивание реальных магнетиков	Основные характеристики процесса намагничивания. Эмпирический закон Релея. Намагничивание путём вращения намагниченности в слабых полях: начальная восприимчивость в поликристаллических образцах с различным характером магнитной анизотропии. Намагничивание в сильных магнитных полях: закон приближения к насыщению для одноосных и многоосных магнетиков. Закон приближения к насыщению в аморфных магнетиках. Намагничивание путём смещения доменных границ. Уравнение энергетического баланса Кондорского. Различные
		модели начальной восприимчивости: напряжений, гибкой доменной стенки, включений. Формальное описание магнитного гистерезиса. Петля
	Магнитный гистерезис	гистерезиса Релея. Диаграмма Прейзаха. Необратимое вращение вектора намагниченности в одноосном и многоосных кристаллах. Микромагнитный подход к описанию процесса перемагничивания. Модели неоднородного перемагничивания бесконечного цилиндра: "закручивание", "изгиб".
P4		Парадокс Брауна. Влияние дефектов на магнитный гистерезис, обусловленный необратимым вращением намагниченности. Особенности магнитной структуры и магнитного гистерезиса мелких частиц.
		Необратимое смещение доменных границ. Коэрцитивная сила в моделях напряжений, включений. Тонкие доменные границы.
P5	Магнитная доменная структура	Методы изучения доменной структуры и их сравнение. Экспериментальные методы изучения доменной структуры. Проблема магнитостатики. Модели доменной структуры Киттеля, Ландау-Лифшица, Малека-Камберского, Кой-Энца.
Р6	Феноменологические модели доменной структуры	Обзор видов доменной структуры на различных кристаллографических плоскостях, влияние толщины. Влияние внешних воздействий: температуры, механических напряжений, магнитной предыстории на доменную структуру магнитных кристаллов. Изменение доменной структуры при действии внешнего поля. Доменная структура тонких пленок, ее фазовая диаграмма.
P7	Микромагнетика доменных границ	Доменные границы в многоосных кристаллах. Влияние внешнего поля на структуру и энергию доменных границ. Внутренняя структура доменных границ в пластинах и пленках с перпендикулярной анизотропией. Изменение внутренней структуры доменных границ при изменении толщины пленок. Особые типы доменных границ. Узкие доменные границы. Линейные доменные границы. Динамика доменной структуры.
P8	Решение задач	Решение оригинальных задач по основным разделам дисциплины: намагничивание монокристаллов, намагничивание реальных магнетиков, магнитный гистерезис.

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	профориентацио нная деятельность	Технология самостоятельной работы	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Доменная структура и процессы перемагничивания

Электронные ресурсы (издания)

- 1. Боровик, Е. С.; Лекции по магнетизму : курс лекций.; Физматлит, Москва; 2005; https://biblioclub.ru/index.php?page=book&id=75475 (Электронное издание)
- 2. Гуфан, , А. Ю.; Физика магнитных явлений : учебник.; Издательство Южного федерального университета, Ростов-на-Дону, Таганрог; 2020; http://www.iprbookshop.ru/115544.html (Электронное издание)
- 3. Мушников, Н. В.; Магнетизм и магнитные фазовые переходы : учебное пособие.; Издательство Уральского университета, Екатеринбург; 2017; https://biblioclub.ru/index.php?page=book&id=695525 (Электронное издание)

Печатные издания

- 1. Боровик, Е. С.; Лекции по магнетизму; ФИЗМАТЛИТ, Москва; 2005 (21 экз.)
- 2. Боков, В. А.; Физика магнетиков : учеб. пособие для вузов.; ФТИ им. А. Ф. Иоффе РАН, Санкт-Петербург; 2002 (51 экз.)
- 3. Иванов, С. В., Мартышко, П. С.; Избранные главы физики. Магнетизм. Магнитный резонанс. Фазовые переходы: курс лекций.; ЛКИ, Москва; 2008 (15 экз.)

- 4. Мушников, Н. В.; Магнетизм и магнитные фазовые переходы : учебное пособие.; Издательство Уральского университета, Екатеринбург; 2017 (5 экз.)
- 5. Кандаурова, Г. С.; Доменная структура магнетиков. Основные вопросы микромагнетики: учебное пособие.; Уральский государственный университет, Свердловск; 1986 (13 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Электронная научная библиотека https://elibrary.ru
- 2. Университетская библиотека онлайн: http://biblioclub.ru
- 3. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Доменная структура и процессы перемагничивания

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблина 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Office Professional 2003 Win32 Russian CD-ROM

		Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Физическое материаловедение

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Катаев Василий	кандидат физико-	Доцент	магнетизма и
	Анатольевич	математических		магнитных
		наук, доцент		наноматериалов

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_{7}$ от $_{29.09.2023}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Катаев Василий Анатольевич, Доцент, магнетизма и магнитных наноматериалов 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Атомное строение металлов	Электронная структура атома. Сила связи и виды связи между атомами. Кристаллическая решетка.
P2	Кристаллическая структура металлов	Индексы кристаллической решетки. Анизотропия свойств металлов. Полиморфные и магнитные превращения. Строение реальных металлов. Дефекты кристаллического строения. Тонкая структура металлов.
Р3	Кристаллизация металлов	Общая характеристика. Термодинамика кристаллизации. Механизм кристаллизации. Кинетика кристаллизация. Строение металлического слитка. Получение монокристаллов. Стеклование, аморфизация.
P4	Упругая и пластическая деформация металлов	Основные понятия. Диаграмма растяжения. Механизмы пластической деформации и упрочнения. Дислокационный механизм пластической деформации. Пластическая деформация поликристаллов.
P5	Влияние нагрева на структуру и свойства пластически деформированных металлов	Возврат и рекристаллизация при нагреве. Изменение свойств наклепанного металла при отжиге.
Р6	Сплавы. Диаграммы состояний систем сплавов	Основные понятия. Твердые растворы деформация и рекристаллизация металлов. Химические соединения и промежуточные фазы.

		Правило фаз. Диаграммы состояний бинарной системы. Непрерывный ряд твердых растворов. Эвтектика с отсутствием растворимости в твердом состоянии. Эвтектика с ограниченной растворимостью в твердом состоянии. Перитектика. Компоненты образуют химическое соединение. Связь диаграмм состояния и свойств сплавов. Диаграммы состояния тройных систем.
P7	Сплавы железо-углерод. Основы теории термической обработки. Классификация и маркировка сталей	Диаграмма сплавов железо-углерод. Микроструктура и фазовый состав плавов железо-углерод. Виды термических обработок. ТО, сопровождающаяся фазовыми превращениями без полиморфных превращений; старение закаленных сплавов. ТО, сопровождающаяся фазовыми превращениями одновременно с полиморфными превращениями. Кинетика превращения аустенита в углеродистой стали. Мартенситное превращение. Превращения при нагреве закаленной стали. Химико-термическая обработка стали. Классификация сталей. Маркировка сталей.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	профориентацио нная деятельность	Технология самостоятельной работы	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физическое материаловедение

Электронные ресурсы (издания)

- 1. Стародубцев, Ю. Н.; Магнитомягкие материалы: энциклопедический словарь-справочник: словарь.; Техносфера, Москва; 2011; https://biblioclub.ru/index.php?page=book&id=496593 (Электронное издание)
- 2. Юм-Розери, Ю., Ю.; Введение в физическое металловедение : монография.; Металлургия, Б.м.; 1965; https://biblioclub.ru/index.php?page=book&id=222289 (Электронное издание)
- 3. Катаев, В. А.; Методы исследования фазового состава и свойств углеродистой стали : учебнометодическое пособие.; Издательство Уральского университета, Екатеринбург; 2016; https://biblioclub.ru/index.php?page=book&id=689965 (Электронное издание)

Печатные издания

- 1. Стародубцев, Ю. Н.; Магнитомягкие материалы: энцикл. слов.-справ..; Техносфера, Москва; 2011 (2 экз.)
- 2. Катаев, В. А., Васьковский, В. О.; Методы исследования фазового состава и свойств углеродистой стали: [учебно-методическое пособие для студентов, обучающихся по программе бакалавриата по направлениям подготовки 27.03.01 "Стандартизация и метрология", 03.03.02 "Физика"].; Издательство Уральского университета, Екатеринбург; 2016 (35 экз.)
- 3. Солнцев, Ю. П., Борзенко, Е. И., Вологжанина, С. А.; Материаловедение. Применение и выбор материалов: учеб. пособие для студентов вузов, обучающихся по направлению 140400 "Техн. физика".; Химиздат, Санкт-Петербург; 2007 (10 экз.)
- 4. Солнцев, Ю. П., Пряхин, Е. И.; Материаловедение : учебник для студентов вузов, обучающихся по металлургическим, машиностроительным и общетехническим специальностям.; ХИМИЗДАТ, Санкт-Петербург; 2007 (11 экз.)
- 5. Гуляев, А. П.; Металловедение: учебник для вузов.; АльянС, Москва; 2011 (20 экз.)
- 6. Лахтин, Ю. М.; Металловедение и термическая обработка металлов: Учеб. для металлург. спец. вузов.; Металлургия, Москва; 1984 (70 экз.)
- 7. Геллер, Ю. А., Рахштадт, А. Г.; Материаловедение : учеб. пособие для вузов.; Металлургия, Москва; 1989 (38 экз.)
- 8. Щербинин, В. Е.; Магнитный контроль качества металлов; УрО РАН, Екатеринбург; 1996 (5 экз.)
- 9. Кузнецов, И. А.; Физическое металловедение: учебное пособие.; УрГУ, Екатеринбург; 1993 (2 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Электронная научная библиотека https://elibrary.ru
- 2. Университетская библиотека онлайн: http://biblioclub.ru
- 3. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

1. Электронные ресурсы образовательного портала edu.ru.

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физическое материаловедение

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

			Таблица 3.
№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Office Professional 2003 Win32 Russian CD-ROM
		Периферийное устройство	
		Подключение к сети Интернет	
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Office Professional 2003 Win32 Russian CD-ROM
		Рабочее место преподавателя	
		Доска аудиторная	
		Периферийное устройство	
		Подключение к сети Интернет	
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется
		Рабочее место преподавателя	
		Доска аудиторная	
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Office Professional 2003 Win32 Russian CD-ROM
		Рабочее место преподавателя	
		Периферийное устройство	

		Подключение к сети Интернет	
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Экспериментальные методы в магнетизме

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Незнахин Дмитрий	кандидат физико-	Доцент	магнетизма и
	Сергеевич	математических		магнитных
		наук, без ученого		наноматериалов
		звания		

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_{7}$ от $_{29.09.2023}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Незнахин Дмитрий Сергеевич, Доцент, магнетизма и магнитных наноматериалов 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Общая характеристика процесса измерений	Физические величины и единицы измерения; виды и методы измерений; о погрешностях измерения; основные понятия; оценка погрешностей прямых измерений; оценка погрешностей косвенных измерений.
P2	Магнитные характеристики вещества и поля, единицы измерения	Общая характеристика проблемы магнитных измерений; магнитное поле и магнитная индукция; единицы измерения индукции и напряженности магнитного поля; магнитные параметры намагничиваемых сред; магнитные характеристики сильномагнитных веществ и материалов; единицы измерения магнитных характеристик магнитных веществ.
Р3	Магнитные цепи, образцы, анализ магнитных цепей	Общие положения теории магнитных цепей; образцы, намагничивающие устройства, анализ магнитных цепей; замкнутая магнитная цепь; разомкнутая магнитная цепь; размагничивающее поле образца; расчет размагничивающего фактора.
P4	Намагничивающие устройства	Катушки Гельмгольца; соленоиды (соленоид, водоохлождаемый соленоид, соленоид Биттера, сверхпроводящий соленоид); электромагниты; источники импульсного поля; использование плазмы для генерации магнитных полей.
P5	Методы и приборы для измерения магнитной индукции	Общие замечания; учет поправки на «воздушный зазор»; баллистический гальванометр; веберметр (флюксметр); методы

		аналогового и цифрового интегрирования сигнала ЭДС; методики измерения в постоянном магнитном поле.
Р6	Измерение намагниченности	Определение намагниченности по измерению э.д.с.; определение намагниченности по измерению силы (метод магнитных весов, маятниковый магнитометр); определение намагниченности по измерению поля рассеяния (метод магнитной стрелки, метод астатического магнитометра, метод вибромагнитометра), явление "магнитного изображения"; магнитометр на эффекте Холла.
P7	Методы измерения напряженности магнитного поля	Физические основы измерения напряженности внутреннего магнитного поля; плоские накладные катушки — катушки поля; магнитный потенциалметр; феррозонд; преобразователи на основе гальваномагнитных эффектов (датчик на основе эффекта Холла, магниторезисторы).
P8	Квантовые преобразователи и преобразователи на основе сверхпроводимости	Ядерные преобразователи (метод резонансного поглощения, метод свободной ядерной индукции); парамагнитные преобразователи; преобразователи на основе эффекта Мессбауэра; преобразователи на основе ферромагнитного резонанса; преобразователи на основе явления сверхппроводимости.
P9	Преобразователи на основе магнитоупругих взаимодействий	Взаимодействие упругих волн со стенками магнитных доменов; взаимодействие спиновых и ультразвуковых волн в ферромагнитных кристаллах.
P10	Измерение динамических магнитных характеристик материалов	Условия измерений; динамическая кривая намагничивания и петля гистерезиса (расчет значений индукции и поля, применение феррометров для определения динамических магнитных характеристик); потери энергии на перемагничивание (магнитные потери) (метод амперметравольтметра, электрический метод прямого измерения мощности, электродинамический ваттметр, электронный ваттметр с электростатическим механизмом, преобразователи на элементах с квадратичной зависимостью выходного сигнала от входного).

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн	профориентацио	Технология	ПК-1 - Способен	У-1 -
ое воспитание	нная деятельность	самостоятельной работы	использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных	Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

задач в области
физики магнитных
явлений,
медицинской и
теоретической
физики, физики
конденсированного
состояния

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Экспериментальные методы в магнетизме

Электронные ресурсы (издания)

- 1. Чернышев, Е. Т.; Магнитные измерения на постоянном и переменном токе : практическое пособие.; Государственное издательство стандартов, Москва; 1962; https://biblioclub.ru/index.php?page=book&id=599189 (Электронное издание)
- 2. Сандомирский, С. Г.; Расчет и анализ размагничивающего фактора ферромагнитных тел : монография.; Белорусская наука, Минск; 2015; https://biblioclub.ru/index.php?page=book&id=436596 (Электронное издание)

Печатные излания

- 1. Чечерников, В. И., Кондорский, Е. И.; Магнитные измерения : [учебное пособие для университетов].; Издательство Московского университета, Москва; 1963 (4 экз.)
- 2. Катаев, В. А., Иванов, О. А.; Методы измерений электрических и магнитных свойств функциональных материалов : учеб. пособие для вузов.; Изд-во Урал. ун-та, Екатеринбург; 2010 (79 экз.)
- 3., Степанова, Е. А., Волегов, А. С.; Современные методы исследования магнитных свойств: СКВИД-магнитометры: учебно-методическое пособие.; Издательство Уральского университета, Екатеринбург; 2011 (50 экз.)
- 4. Иванов, С. В., Мартышко, П. С.; Избранные главы физики. Магнетизм. Магнитный резонанс. Фазовые переходы: курс лекций.; ЛКИ, Москва; 2008 (15 экз.)
- 5. Hubert, A.; Magnetic domains: The analysis of magnetic microstructures.; Springer, Berlin; 2000 (2 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Электронная научная библиотека https://elibrary.ru
- 2. Университетская библиотека онлайн: http://biblioclub.ru
- 3. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru

Материалы для лиц с **OB3**

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Экспериментальные методы в магнетизме

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Office Professional 2003 Win32 Russian CD-ROM

		Рабочее место преподавателя	
		Периферийное устройство	
		Подключение к сети Интернет	
5	Самостоятельная	Мебель аудиторная с	Не требуется
	работа студентов	количеством рабочих мест в	
		соответствии с количеством	
		студентов	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Квантовая теория магнетизма

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Бострем Ирина	кандидат физико-	Доцент	теоретической и
	Геннадьевна	математических		математической
		наук, доцент		физики

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_{7}$ от $_{29.09.2023}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Бострем Ирина Геннадьевна, Доцент, теоретической и математической физики 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение. Орбитальный и спиновый магнетизм	Электрон в магнитном поле. Уровни Ландау. Квантовый эффект Холла. Парамагнетизм Паули. Кристаллическое поле.
P2	Обменное взаимодействие	Прямой обмен. Методы Хартри-Фока. Сверхобмен. Теория Андерсона. Косвенный обмен.
Р3	Магнитные фазовые переходы	Фазовые переходы второго порядка. Корреляционная длина. Критические экспоненты. Законы скейлинга.
P4	Теория среднего поля	Молекулярное поле. Магнитная восприимчивость и спонтанная намагниченность. Типы магнитного упорядочения.
Р5	Модель Изинга и ХҮ модель	Решение в отсутствие поля. Спиновая цепочка ½. Переходы Костерлиц-Таулесса в двумерной XY модели.
Р6	Спиновые волны	Элементарные возбуждения и магноны. Нелинейные спиновые волны. Термодинамика магнонов.
P7	Квантовые спиновые цепочки	Теоремы Либа-Маттиса-Шульца и Маршалла. Нелинейная σ- модель для антиферромагниной цепочки.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направление	Вид	Технология	Компетенция	Результаты
воспитательной	воспитательной	воспитательной		обучения
		деятельности		

деятельности	деятельности			
Профессиональн ое воспитание	профориентацио нная деятельность	Технология самостоятельной работы	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Квантовая теория магнетизма

Электронные ресурсы (издания)

1. Вонсовский, С. В.; Магнетизм: магнитные свойства диа-, пара-, ферро-, антиферро-, и ферримагнетиков : монография.; Наука, Москва; 1971; https://biblioclub.ru/index.php?page=book&id=483412 (Электронное издание)

Печатные издания

- 1. Вонсовский, С. В.; Магнетизм. Магнитные свойства диа-, пара-, ферро-, антиферро-, и ферримагнетиков; Наука, Москва; 1971 (17 экз.)
- 2. Ландау, Л. Д.; Теоретическая физика: в 10 т.: учебное пособие. Т. 3. Квантовая механика. Нерелятивистская теория; Наука, Москва; 1989 (83 экз.)
- 3. Levy, L.-P.; Magnetism and superconductivity; Springer, Berlin; 2000 (1 экз.)
- 4. Уайт Роберт, М., Либерман, М. А., Боровик-Романов, А. С., Питаевский, Л. П.; Квантовая теория магнетизма; Мир, Москва; 1985 (8 экз.)
- 5. Изюмов, Ю. А., Кацнельсон, М. И., Скрябин, Ю. Н.; Магнетизм коллективизированных электронов; Наука, Москва; 1994 (4 экз.)
- 6. Skomski, R.; Simple models of magnetism; Oxford University Press, Oxford; 2012 (1 экз.)
- 7. Изюмов, Ю. А.; Базовые модели в квантовой теории магнетизма; [УрО РАН], Екатеринбург; 2002 (3 экз.)

Профессиональные базы данных, информационно-справочные системы

1. Электронная научная библиотека https://elibrary.ru

- 2. Университетская библиотека онлайн: http://biblioclub.ru
- 3. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Квантовая теория магнетизма

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется

		Рабочее место преподавателя Доска аудиторная	
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Резонансные и релаксационные явления в магнетиках

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень,	Должность	Подразделение
J (= 11/11	Paminina Hima of Icelbo	ученое звание	должноств	
1	Васьковский Владимир	доктор физико-	Заведующий	магнетизма и
	Олегович	математических	кафедрой	магнитных
		наук, профессор		наноматериалов

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № _7_ от _29.09.2023_ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Васьковский Владимир Олегович, Заведующий кафедрой, магнетизма и магнитных наноматериалов
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины*	Содержание	
P1	Введение	Динамические магнитные характеристики: динамическая петля гистерезиса и её количественные параметры; комплексная магнитная проницаемость и её связь с параметрами электрической цепи. Принципы измерения динамических магнитных характеристик.	
P2	Влияние вихревых токов на магнитные свойства магнетиков	Магнитное поле в проводящем ферромагнитном полупространстве. Влияние вихревых токов на составляющие комплексной магнитной проницаемости и потери энергии на перемагничивание. Роль доменных границ в формировании потерь энергии. Пути снижения потерь энергии в электротехнической стали.	
Р3	Резонансные и релаксационные явления в области средних частот перемагничивания	Переменное магнитное поле в диэлектрике. Размерный резонанс. Магнитострикционный резонанс. Магнитное последействие. Уравнение магнитной вязкости. Релаксационный спектр. Влияние магнитного последействия на составляющие комплексной магнитной проницаемости. Термическое последействие. Диффузионное последействие и связанные с ним особенности свойств магнетиков.	
P4	Магнитный резонанс	Природа магнитного резонанса. Уравнение Ландау-Лифшица. Прецессия магнитного момента без затухания и при наличии диссипации энергии. Классическая интерпретация природы магнитного резонанса. Элементы классической теории магнитного резонанса. Магнитный спектр. Ферромагнитный	

		резонанс в образцах конечных размеров. Влияние магнитной анизотропии и доменных границ на частоту ФМР. Магнитный резонанс в ферри- и антиферромагнетиках. Спиновые волны в линейной цепочке магнитных моментов. Спин-волновой резонанс. Релаксация магнитного момента. Уравнение Блоха. Ядерный магнитный резонанс. Его особенности в сильномагнитных веществах. Эффект Мёссбауэра. Условия наблюдения. Факторы, влияющие на резонансный спектр.
P5	Элементы динамики доменных границ	Механизм движения доменных границ с позиции уравнения Ландау-Лифшица. Эффективная масса доменной границы. Уравнение Дёринга. Релаксация и резонанс доменных границ.
Р6	Решение задач	Решение оригинальных задач по тематике дисциплины: магнитодинамика низких и средних частот перемагничивания; магнитный резонанс; динамика доменных границ.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	профориентацио нная деятельность	Технология самостоятельной работы	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Резонансные и релаксационные явления в магнетиках

Электронные ресурсы (издания)

1. Шавров, В. Г.; Ферромагнитный резонанс в условиях ориентационного перехода : монография.; Физматлит, Москва; 2018; https://biblioclub.ru/index.php?page=book&id=612825 (Электронное издание)

2. Боровик, Е. С.; Лекции по магнетизму : курс лекций.; Физматлит, Москва; 2005; https://biblioclub.ru/index.php?page=book&id=75475 (Электронное издание)

Печатные издания

- 1. Боровик, Е. С.; Лекции по магнетизму; ФИЗМАТЛИТ, Москва; 2005 (21 экз.)
- 2. Филиппов, Б. Н.; Ч. 1 : [в 2 ч.].; УрО РАН, Екатеринбург; 2019 (2 экз.)
- 3. Филиппов, Б. Н.; Ч. 2 : [в 2 ч.].; УрО РАН, Екатеринбург; 2020 (2 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Электронная научная библиотека https://elibrary.ru
- 2. Университетская библиотека онлайн: http://biblioclub.ru
- 3. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Резонансные и релаксационные явления в магнетиках

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в	Office Professional 2003 Win32 Russian CD-ROM

		соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется