Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
ектор по образовательной	Ди	
деятельности		
С.Т. Князев		
С.1. КПИЗСВ	>>>	

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1159243	Специальные главы математики

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Физика высокоэнергетических процессов	1. 14.04.02/33.02
Направление подготовки	Код направления и уровня подготовки
1. Ядерные физика и технологии	1. 14.04.02

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Байтимиров Дамир	кандидат	Доцент	Физики
	Рафисович	физико-		высокоэнергетических
		математических		процессов
		наук, без		
		ученого звания		

Согласовано:

Управление образовательных программ

Р.Х. Токарева

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Специальные главы математики

1.1. Аннотация содержания модуля

В модуле дается строгое и компактное изложение основных задач и методов нелинейной механики, которое отличается от существующих курсов по выбору материала и способу их изложения. Дается элементарное введение в общую теорию интегрируемых систем и теорию солитонов. На примере уравнений движения твердого тела представлен современный алгоритм поиска интегрируемых систем. На примере динамики частиц в решетке Тоды описаны методы обратной задачи рассеяния и обсуждается новый тип локализованных возбуждений —солитонов. Обсуждаются представление Лакса, преобразования Дарбу и Бэклунда, связь обратной задачи рассеяния с задачей Римана. Модуль служит введением в физику реальных кристаллов и включает следующие основные разделы: элементы теории деформационного упрочнения и разрушения металлов и сплавов, методы описания структуры и свойств границ зерен, влияние кристаллической структуры на свойства дислокаций. Детально рассматриваются методы компьютерного моделирования физических процессов в реальных кристаллах.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Методы молекулярной динамики	3
2	Теория рассеяния	3
3	Функции Грина	3
	ИТОГО по модулю:	9

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	1. Фундаментальные основы ядерных технологий
Постреквизиты и кореквизиты Не предусмотрены	
модуля	

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблина 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
---------------------------------	-----------------------------------	---

1	2	3
Методы молекулярной динамики	ПК-4 - Способен самостоятельно осваивать и применять современные математические методы исследования, анализа и обработки данных, научно-исследовательскую, измерительно-аналитическую и технологическую аппаратуру в области ядерной физики и технологий	3-1 - Формулировать научную проблематику в области ядерной физики и технологий 3-2 - Характеризовать цели и задачи производимых исследований 3-3 - Описывать методы и средства математической обработки результатов расчетных и экспериментальных данных У-1 - Анализировать новую научную проблематику соответствующей области знаний У-2 - Применять методы математической и графической обработки результатов исследования, анализа и обработки данных П-1 - Обоснованно предлагать новые направления исследований и анализа в области ядерной физики и технологий П-2 - Иметь практические навыки экспертной оценки результатов исследовательских работ и применения
	ПК-6 - Способен применять методы и средства планирования, организации, проведения и внедрения научных исследований и опытно-конструкторских разработок	3-1 - Характеризовать методы, средства и практику планирования, организации, проведения и внедрения научных исследований и опытно-конструкторских разработок в области ядерной физики и технологий 3-2 - Определять порядок проведения научно-исследовательских и опытно-конструкторских работ У-1 - Применять методы и средства планирования, организации, проведения и внедрения научных исследований и опытно-конструкторских разработок в области ядерной физик и технологий У-2 - Пользоваться методами учета и оценки погрешностей экспериментальных данных П-1 - Организовать или участвовать в организации внедрения результатов научно-исследовательских и опытно-конструкторских работ в области ядерной физики и технологий

Теория ПК-4 - Способен 3-1 - Формулировать научную проблематику в области ядерной физики и рассеяния самостоятельно технологий осваивать и применять современные 3-2 - Характеризовать цели и задачи математические методы производимых исследований исследования, анализа и обработки данных, 3-3 - Описывать методы и средства научноматематической обработки результатов исследовательскую, расчетных и экспериментальных данных измерительно-У-1 - Анализировать новую научную аналитическую и проблематику соответствующей области технологическую знаний аппаратуру в области ядерной физики и У-2 - Применять методы математической и технологий графической обработки результатов исследования, анализа и обработки данных П-1 - Обоснованно предлагать новые направления исследований и анализа в области ядерной физики и технологий П-2 - Иметь практические навыки экспертной оценки результатов исследовательских работ и применения современных методов исследования ПК-6 - Способен 3-1 - Характеризовать методы, средства и практику планирования, организации, применять методы и средства планирования, проведения и внедрения научных организации, проведения исследований и опытно-конструкторских и внедрения научных разработок в области ядерной физики и технологий исследований и опытноконструкторских 3-2 - Определять порядок проведения разработок научно-исследовательских и опытноконструкторских работ У-1 - Применять методы и средства планирования, организации, проведения и внедрения научных исследований и опытноконструкторских разработок в области ядерной физик и технологий У-2 - Пользоваться методами учета и оценки погрешностей экспериментальных данных П-1 - Организовать или участвовать в организации внедрения результатов научноисследовательских и опытноконструкторских работ в области ядерной физики и технологий

Функции Грина ПК-4 - Способен 3-1 - Формулировать научную проблематику в области ядерной физики и самостоятельно технологий осваивать и применять современные 3-2 - Характеризовать цели и задачи математические методы производимых исследований исследования, анализа и обработки данных, 3-3 - Описывать методы и средства научноматематической обработки результатов исследовательскую, расчетных и экспериментальных данных измерительно-У-1 - Анализировать новую научную аналитическую и проблематику соответствующей области технологическую знаний аппаратуру в области ядерной физики и У-2 - Применять методы математической и технологий графической обработки результатов исследования, анализа и обработки данных П-1 - Обоснованно предлагать новые направления исследований и анализа в области ядерной физики и технологий П-2 - Иметь практические навыки экспертной оценки результатов исследовательских работ и применения современных методов исследования ПК-6 - Способен 3-1 - Характеризовать методы, средства и практику планирования, организации, применять методы и средства планирования, проведения и внедрения научных исследований и опытно-конструкторских организации, проведения разработок в области ядерной физики и и внедрения научных технологий исследований и опытноконструкторских 3-2 - Определять порядок проведения разработок научно-исследовательских и опытноконструкторских работ У-1 - Применять методы и средства планирования, организации, проведения и внедрения научных исследований и опытноконструкторских разработок в области ядерной физик и технологий У-2 - Пользоваться методами учета и оценки погрешностей экспериментальных данных П-1 - Организовать или участвовать в организации внедрения результатов научноисследовательских и опытноконструкторских работ в области ядерной физики и технологий

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Методы молекулярной динамики

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Байтимиров Дамир	кандидат физико-	Доцент	Кафедра физики
	Рафисович	математических		высокоэнергетиче
		наук, без ученого		ских процессов
		звания		

Рекомендовано учебно-методическим советом института Физико-технологический

Протокол № $_{\underline{6}}$ от $_{\underline{11.02.2022}}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Байтимиров Дамир Рафисович, Доцент, Физики высокоэнергетических процессов 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
1	Основная идея метода молекулярной динамики	Основная идея метода, математический аппарат, используемые приближения. Пространственные и временные масштабы метода
2	Потенциалы взаимодействия	Виды потенциалов взаимодействия. Применение потенциалов взаимодействия в зависимости от типа задач
3	Численное интегрирование уравнений движения	Численное интегрирование уравнений движения. Алгоритмы вычисления взаимодействий
4	Учет влияния внешней среды.	Виды термостатов и их применение в зависимости от типа задачи. Термостат Андерсена, Берендсена и др Виды баростатов. Баростат Берендсена и др
5	Постановка задачи.	Построение модели молекулярно-динамического расчета. Интерпре-тация и проверка физичности полученных результатов. Выбор раз-мера системы и количества шагов в зависимости от типа задачи
6	Перспективы развития метода. Обзор программных кодов и баз потенциалов	Обзор бесплатных программных кодов для использования в различных физических и биологических задачах. Базы готовых потенциалов в открытом доступе. Перспективные направления развития метода

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Методы молекулярной динамики

Электронные ресурсы (издания)

- 1. Мицель, А. А.; Вычислительные методы : учебное пособие.; Эль Контент, Томск; 2013; https://biblioclub.ru/index.php?page=book&id=480612 (Электронное издание)
- 2. Крылов, В. И., Ходан, Е. Ю., Шикин, Е. В.; Вычислительные методы; Наука, Москва; 1977; https://biblioclub.ru/index.php?page=book&id=456989 (Электронное издание)
- 3. Губина, Т. Н.; Учебно-методическое пособие по дисциплине «Компьютерное моделирование» : учебное пособие.; Елецкий государственный университет им. И. А. Бунина, Елец; 2004; https://biblioclub.ru/index.php?page=book&id=272142 (Электронное издание)

Печатные издания

- 1. Швыдкий, В. С., Дзюзер, В. Я.; Методы численного решения инженерных задач: учеб. пособие для студентов специальностей направления 270100 "Стр-во" всех форм обучения.; АМБ, Екатеринбург; 2010 (10 экз.)
- 2. Хеерман, Д. В., Дитер В.; Методы компьютерного эксперимента в теоретической физике Вып. 1.; Наука, Москва; 1990 (11 экз.)
- 3. Башкирцева, И. А.; Компьютерное моделирование нелинейной динамики. Непрерывные модели: учебное пособие для студентов, обучающихся по программе бакалавриата по направлениям подготовки 01.03.01 "Математика", 02.03.01 "Математика и компьютерные науки", 02.03.02 "Фундаментальная информатика и информационные технологии", 09.03.03 "Прикладная информатика".; Издательство Уральского университета, Екатеринбург; 2017 (5 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Полнотекстовая БД American Chemical Society (http://pubs.acs.org/).
- 2. Полнотекстовая БД American Institute of Physics (http://scitation.aip.org/).
- 3. Полнотекстовая БД American Physical Society (https://journals.aps.org/about).
- 4. Полнотекстовая БД Annual Reviews Science Collection (http://www.annualreviews.org).
- 5. Полнотекстовая БД Applied Science & Technology Source (http://search.ebscohost.com).
- 6. Полнотекстовая БД eLibrary научная электронная библиотека (http://elibrary.ru).
- 7. Реферативная БД INSPEC. EBSCO publishing (http://search.ebscohost.com/).
- 8. Полнотекстовая БД Institute of Physics (IOP) (http://iopscience.iop.org/).
- 9. Библиографическая БД Journal Citation Reports (JCR). Web of Science (http://apps.webofknowledge.com/).
- 10. Полнотекстовая БД Nature (https://www.nature.com/siteindex).

- 11. Полнотекстовая БД Optical Society of America (OSA) (https://www.osapublishing.org/about.cfm).
- 12. Полнотекстовая БД Questel Patent (https://www.orbit.com/).
- 13. Полнотекстовая БД Science AAAS (American Association for the Advancement of Science) (http://www.sciencemag.org/).
- 14. Полнотекстовая БД ScienceDirect Freedom Collection (http://www.sciencedirect.com/).
- 15. Реферативная БД Scopus (http://www.scopus.com/).
- 16. Полнотекстовая БД Springer Materials (https://materials.springer.com/).
- 17. Полнотекстовая БД Springer Nature Experiments (https://experiments.springernature.com/).
- 18. Полнотекстовая БД SpringerLink (https://link.springer.com/).
- 19. Реферативная БД Web of Science Core Collection (http://apps.webofknowledge.com/).
- 20. Полнотекстовая БД Wiley Journal Database (http://onlinelibrary.wiley.com/).

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Министерство образования и науки Российской Федерации (http://минобрнауки.рф/).
- 2. Федеральный портал «Российское образование» (http://www.edu.ru/).
- 3. ООО Научная электронная библиотека (http://elibrary.ru/defaultx.asp).
- 4. Зональная научная библиотека УрФУ(http://lib.urfu.ru).
- 5. Электронный научный архив УрФУ (https://elar.urfu.ru).

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Методы молекулярной динамики

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется

		Рабочее место преподавателя	
		Доска аудиторная	
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
3	Vouceyn Tourin	Мебель аудиторная с	Не требуется
3	Консультации	количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	The Tpedyeren
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **Теория рассеяния**

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Байтимиров Дамир	кандидат физико-	Доцент	Кафедра физики
	Рафисович	математических		высокоэнергетиче
		наук, без ученого		ских процессов
		звания		

Рекомендовано учебно-методическим советом института Физико-технологический

Протокол № $_{\underline{6}}$ от $_{\underline{11.02.2022}}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Байтимиров Дамир Рафисович, Доцент, Физики высокоэнергетических процессов 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
1	Общий формализм теории рассеяния	Физическая постановка задачи теории рассеяния. Рассеяние, поглощение и экстинкция. Рассеяние на флуктуациях и частицах, стационарная и временная теория рассеяния. Оператор рассеяния (S -матрица) и его свойства. Общий вид оператора рассеяния. Связь оператора рассеяния и теории полугрупп операторов.
тучков ч рассеяни стическо дукцион рассеяния дукцион яние упр Многокр магнитн		Рассеяние классической частицы на препятствии, рассеяние пучков частиц. Основное интегральное уравнение теории рассеяния, уравнение Липпмана-Швингера: рассеяние акустической волны; рассеяние электромагнитной волны, индукционные методы геофизической электроразведки; рассеяние упругих волн, метод динамической сейсморазведки. Многократное рассеяние акустических, упругих и электромагнитных волн: дистанционное зондирование океана и атмосферы; распространение волн в упорядоченных и неупо-

Оператор рассеяния в квантовой механике, его свойства: определение квантово-механического сечения рассеяния; квантово-механическое уравнение Липпмана-Швингера; двухчастичный оператор рассеяния; рассеяние частиц со спином; борновский ряд и борновское приближение; ради- альные волновые функции для свободного движения; стаци- онарные состояния, S -матрица для парциальных волн; уравнение Липпмана-Швингера для парциальных волн; по- нятие о многоканальных процессах, оператор рассеяния в			рядоченных композитах.
многоканальном случае	3	*	Оператор рассеяния в квантовой механике, его свойства: определение квантово-механического сечения рассеяния; квантово-механическое уравнение Липпмана-Швингера; двухчастичный оператор рассеяния; рассеяние частиц со спином; борновский ряд и борновское приближение; радиальные волновые функции для свободного движения; стационарные состояния, S-матрица для парциальных волн; уравнение Липпмана-Швингера для парциальных волн; понятие о многоканальных процессах, оператор рассеяния в

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Теория рассеяния

Электронные ресурсы (издания)

- 1., Трусов, П. В.; Введение в математическое моделирование : учебное пособие.; Логос, Москва; 2004; https://biblioclub.ru/index.php?page=book&id=84691 (Электронное издание)
- 2. Диков, А. В., Сугробов, Г. В.; Математическое моделирование и численные методы : учебное пособие.; Пензенский государственный педагогический университет (ПГПУ), Пенза; 2000; https://biblioclub.ru/index.php?page=book&id=96973 (Электронное издание)
- 3. Ведринский, Р. В.; Квантовая теория рассеяния : учебник.; Южный федеральный университет, Ростов-на-Дону; 2008; https://biblioclub.ru/index.php?page=book&id=240938 (Электронное издание)
- 4. Сунакава, С., С.; Квантовая теория рассеяния; Мир, Москва; 1979; https://biblioclub.ru/index.php?page=book&id=495598 (Электронное издание)

Печатные издания

- 1. Позднеев, С. А.; Применение квантовой теории рассеяния для расчетов процессов ядерной, атомной и молекулярной физики; ЯНУС-К, Москва; 2001 (5 экз.)
- 2. Поплавной, А. С.; Квантовая теория рассеяния: (учебное пособие).; [б. и.], Кемерово; 1989 (1 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Полнотекстовая БД American Chemical Society (http://pubs.acs.org/).
- 2. Полнотекстовая БД American Institute of Physics (http://scitation.aip.org/).
- 3. Полнотекстовая БД American Physical Society (https://journals.aps.org/about).
- 4. Полнотекстовая БД Annual Reviews Science Collection (http://www.annualreviews.org).
- 5. Полнотекстовая БД Applied Science & Technology Source (http://search.ebscohost.com).
- 6. Полнотекстовая БД eLibrary научная электронная библиотека (http://elibrary.ru).
- 7. Реферативная БД INSPEC. EBSCO publishing (http://search.ebscohost.com/).
- 8. Полнотекстовая БД Institute of Physics (IOP) (http://iopscience.iop.org/).
- 9. Библиографическая БД Journal Citation Reports (JCR). Web of Science (http://apps.webofknowledge.com/).
- 10. Полнотекстовая БД Nature (https://www.nature.com/siteindex).
- 11. Полнотекстовая БД Optical Society of America (OSA) (https://www.osapublishing.org/about.cfm).
- 12. Полнотекстовая БД Questel Patent (https://www.orbit.com/).
- 13. Полнотекстовая БД Science AAAS (American Association for the Advancement of Science) (http://www.sciencemag.org/).
- 14. Полнотекстовая БД ScienceDirect Freedom Collection (http://www.sciencedirect.com/).
- 15. Реферативная БД Scopus (http://www.scopus.com/).
- 16. Полнотекстовая БД Springer Materials (https://materials.springer.com/).
- 17. Полнотекстовая БД Springer Nature Experiments (https://experiments.springernature.com/).
- 18. Полнотекстовая БД SpringerLink (https://link.springer.com/).
- 19. Реферативная БД Web of Science Core Collection (http://apps.webofknowledge.com/).
- 20. Полнотекстовая БД Wiley Journal Database (http://onlinelibrary.wiley.com/).

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Министерство образования и науки Российской Федерации (http://минобрнауки.рф/).
- 2. Федеральный портал «Российское образование» (http://www.edu.ru/).
- 3. ООО Научная электронная библиотека (http://elibrary.ru/defaultx.asp).
- 4. Зональная научная библиотека УрФУ(http://lib.urfu.ru).
- 5. Электронный научный архив УрФУ (https://elar.urfu.ru).

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Теория рассеяния

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
3	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
4	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

Персональные компьютеры по количеству обучающихся	
Подключение к сети Интернет	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Функции Грина

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Зверев Владимир	доктор физико-	Профессор	Кафедра
	Владимирович	математических		теоретической
		наук, доцент		физики и
				прикладной
				математики

Рекомендовано учебно-методическим советом института Физико-технологический

Протокол № $\underline{6}$ от $\underline{11.02.2022}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Зверев Владимир Владимирович, Профессор, теоретической физики и прикладной математики
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
1	Основные положения.	Пропагаторы. Интегралы по траектории (функциональные интегралы). Теория возмущений для пропагатора.
2	Функции Грина при нулевой температуре	Определение функций Грина многочастичной системы. Невозмущенные функции Грина. Аналитические свойства функций Грина. Запаздывающая и опережающая функции Грина. Возбуждения квазичастиц, запаздывающие и опережающие функции Грина. Соотношения Крамерса-Кронига. Функция Грина и наблюдаемые. Теория возмущений: диаграммы Фейнмана. Правила Фейнмана. Теоремы Вика и сокращения. Операции с диаграммами. Собственно-энергетическая функция. Уравнение Дайсона. Перенормировка взаимодействия. Поляризационный оператор. Экранирование кулоновского взаимодействия. Самосогласованная теория возмущений. Многочастичные функции Грина. Вершинная функция
3	Функции Грина при конечной температуре	Статистический оператор (матрица плотности). Уравнение Лиувилля. Определение и аналитические свойства гриновских функций. Уравнение Блоха. Температурная (мацубаровская) функция Грина. Ряды возмущений и диаграммная техника для температурных функций Грина

4	Теория линейного отклика	Неравновесная причинная функция Грина: определение. Контурное упорядочение и три дополнительные неравновесные гриновские функции. Формализм Келдыша. Уравнения Дайсона для неравновесных функций Грина. Квантовое кинетическое уравнение. Приложение: электропроводность квантовых точечных контактов. Метод туннельного гамильтониана
5	Методы квантовой теории поля и сверхпроводимость	Сверхпроводящее состояние. Нестабильность нормального состояния. Гамильтониан спаривания (БКШ). Функции Грина сверхпроводника. Формализм Намбу-Горькова. Матричная структура теории. Элементы теории сильной связи. Уравнения Горькова для гриновских функций. Токопроводящее состояние сверхпроводника. Разрушение током сверхпроводимости. Андреевское отражение

- 1.3. Направление, виды воспитательной деятельности и используемые технологии Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.
- 1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Функции Грина

Электронные ресурсы (издания)

- 1. Абрикосов, А. А.; Методы квантовой теории поля в статистической физике; Физматгиз, Москва; 1962; https://biblioclub.ru/index.php?page=book&id=483334 (Электронное издание)
- 2. Каданов, Л., Л., Зубарев, Д. Н.; Квантовая статистическая механика: методы функций Грина в теории равновесных и неравновесных процессов; Мир, Москва; 1964; https://biblioclub.ru/index.php?page=book&id=482827 (Электронное издание)
- 3. Маттук, Р., Р.; Фейнмановские диаграммы в проблеме многих тел; Мир, Москва; 1969; https://biblioclub.ru/index.php?page=book&id=483384 (Электронное издание)
- 4. Балеску, Р., Р.; Равновесная и неравновесная статистическая механика: учебное пособие.; Мир, Москва; 1978; https://biblioclub.ru/index.php?page=book&id=495472 (Электронное издание)

Печатные издания

- 1. Ландау, Л. Д.; Теоретическая физика: Учеб. пособие для физ. спец. ун-тов: В 10 т. Т. 5. Статистическая физика, ч.1. 4-е изд., испр.; Наука, Москва; 1995 (25 экз.)
- 2. Маттук, Р. Д., Ричард Д., Бонч-Бруевич, В. Л., Краско, Г. Л., Сурис, Р. А.; Фейнмановские диаграммы

- в проблеме многих тел; Мир, Москва; 1969 (7 экз.)
- 3. Балеску, Р., Зубарев, Д. Н., Климонтович, Ю. Л.; Равновесная и неравновесная статистическая механика: В 2 т. Т. 1.; Мир, Москва; 1978 (17 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Полнотекстовая БД American Chemical Society (http://pubs.acs.org/).
- 2. Полнотекстовая БД American Institute of Physics (http://scitation.aip.org/).
- 3. Полнотекстовая БД American Physical Society (https://journals.aps.org/about).
- 4. Полнотекстовая БД Annual Reviews Science Collection (http://www.annualreviews.org).
- 5. Полнотекстовая БД Applied Science & Technology Source (http://search.ebscohost.com).
- 6. Полнотекстовая БД eLibrary научная электронная библиотека (http://elibrary.ru).
- 7. Реферативная БД INSPEC. EBSCO publishing (http://search.ebscohost.com/).
- 8. Полнотекстовая БД Institute of Physics (IOP) (http://iopscience.iop.org/).
- 9. Библиографическая БД Journal Citation Reports (JCR). Web of Science (http://apps.webofknowledge.com/).
- 10. Полнотекстовая БД Nature (https://www.nature.com/siteindex).
- 11. Полнотекстовая БД Optical Society of America (OSA) (https://www.osapublishing.org/about.cfm).
- 12. Полнотекстовая БД Questel Patent (https://www.orbit.com/).
- 13. Полнотекстовая БД Science AAAS (American Association for the Advancement of Science) (http://www.sciencemag.org/).
- 14. Полнотекстовая БД ScienceDirect Freedom Collection (http://www.sciencedirect.com/).
- 15. Реферативная БД Scopus (http://www.scopus.com/).
- 16. Полнотекстовая БД Springer Materials (https://materials.springer.com/).
- 17. Полнотекстовая БД Springer Nature Experiments (https://experiments.springernature.com/).
- 18. Полнотекстовая БД SpringerLink (https://link.springer.com/).
- 19. Реферативная БД Web of Science Core Collection (http://apps.webofknowledge.com/).
- 20. Полнотекстовая БД Wiley Journal Database (http://onlinelibrary.wiley.com/).

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Министерство образования и науки Российской Федерации (http://минобрнауки.рф/).
- 2. Федеральный портал «Российское образование» (http://www.edu.ru/).

- 3. ООО Научная электронная библиотека (http://elibrary.ru/defaultx.asp).
- 4. Зональная научная библиотека УрФУ(http://lib.urfu.ru).
- 5. Электронный научный архив УрФУ (https://elar.urfu.ru).

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Функции Грина

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES Office Professional 2003 Win32 Russian CD-ROM
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется

5	Самостоятельная	Мебель аудиторная с	Office Professional 2003 Win32
	работа студентов	количеством рабочих мест в	Russian CD-ROM
		соответствии с количеством студентов	Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
		Рабочее место преподавателя	
		Персональные компьютеры по количеству обучающихся	
		Подключение к сети Интернет	