Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
иректор по образовательной	Ді	
деятельности		
С.Т. Князев		
С.1. Кимось		

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1155950	Физика и технологии микро- и наноэлектроники

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Материалы микро- и наносистемной техники	1. 28.04.01/33.01
Направление подготовки	Код направления и уровня подготовки
1. Нанотехнологии и микросистемная техника	1. 28.04.01

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение	
1	Германенко	доктор физико-	Профессор	физики	
	Александр	математических		конденсированного	
	Викторович	наук, доцент		состояния и	
				наноразмерных систем	
2	Зырянова Наталья	кандидат	Доцент	Департамент	
	Павловна	физико-		фундаментальной и	
		математических		прикладной физики	
		наук, доцент			
3	Трефилова Анна	кандидат	Доцент	физики	
	Николаевна	физико-		конденсированного	
		математических		состояния и	
		наук, без		наноразмерных систем	
		ученого звания			
4	Шлычков	кандидат	Доцент Департамент		
	Владимир	технических		фундаментальной и	
	Иванович	наук, доцент	прикладной физи		
5	Шур Владимир	доктор физико-	Профессор физики		
	Яковлевич	математических		конденсированного	
		наук, профессор		состояния и	
				наноразмерных систем	

Согласовано:

Управление образовательных программ

Е.С. Комарова

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Физика и технологии микро- и наноэлектроники

1.1. Аннотация содержания модуля

В модуль входят курсы «Ломенная структура сегнетоэлектриков», «Физика наноматериалов», «Физика полупроводников и диэлектриков», «Физика твердого тела и твердотельная электроника», «Оптическая обработка информации». Курс «Доменная структура сегнетоэлектриков» посвящен основам физики сегнетоэлектричества и изучению особенностей формирования и динамики доменной структуры в сегнетоэлектриках. Курс «Физика наноматериалов» посвящен изучению эффектов, определяющих особые закономерности протекания различных физико-химических процессов в областях нанометровых размеров; ознакомлению с современными достижениями по созданию и применению наноматериалов, знакомству с современными экспериментальными средствами исследования наноматериалов. В курсе «Физика полупроводников и диэлектриков» рассматриваются основы зонной теории кристаллов, рассмотрен спектр реальных полупроводников и диэлектриков. Изучается влияние дефектов и примеси на зонную структуру. Изучаются механизмы рассеяния носителей заряда, явления переноса. Курс «Физика твердого тела и твердотельная электроника» посвящен изучению основных физических явлений в твердых телах; математического аппарата, описывающего процессы, протекающие в твердых телах; практического применения приборов твердотельной электроники. На основе анализа моделей строения твердых тел рассматриваются влияние структуры кристаллической решетки и характера взаимодействия электронов с решеткой на кинетические явления в твердых телах. В курсе «Оптическая обработка информации» рассматриваются основы построения оптических систем, источником информации для которых являются пространственно-временные сигналы оптического диапазона длин волн. Рассматриваются описание и математические модели оптических сигналов, общие принципы пространственной фильтрации оптических сигналов.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Физика твердого тела и твердотельная электроника	4
2	Физика наноматериалов	3
3 Доменная структура сегнетоэлектриков		4
4	Оптическая обработка информации	3
5	Физика полупроводников и диэлектриков	4
	ИТОГО по модулю:	18

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	Не предусмотрены

Постреквизиты и кореквизиты	Не предусмотрены
модуля	

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Доменная структура сегнетоэлектрик ов	ОПК-1 - Способен формулировать и решать научно- исследовательские, технические, организационно- экономические и комплексные задачи, применяя фундаментальные знания	3-2 - Привести примеры терминологии, принципов, методологических подходов и законов фундаментальных и общеинженерных наук, применимых для формулирования и решения задач проблемной области знания У-2 - Критически оценить возможные способы решения задач проблемной области, используя знания фундаментальных и общеинженерных наук
		П-1 - Работая в команде, разрабатывать варианты формулирования и решения научно-исследовательских, технических, организационно-экономических и комплексных задач, применяя знания фундаментальных и общеинженерных наук
	ПК-5 - Способен предлагать актуальные методы и подходы решения научных и технологических задач в области наноматериалов, а также смежных областей	3-1 - Описывать основные научные достижения и современные методы экспериментальных и теоретических исследований У-1 - Определять конкретную задачу в рамках научного эксперимента П-1 - Использовать методы решения
		научно-технологических задач на основе анализа согласованных научных знаний
Оптическая обработка информации	ОПК-1 - Способен формулировать и решать научно- исследовательские, технические, организационно-	3-1 - Соотносить проблемную область с соответствующей областью фундаментальных и общеинженерных наук У-1 - Использовать для формулирования и решения задач проблемной области терминологию, основные принципы,

	экономические и комплексные задачи, применяя фундаментальные знания	методологические подходы и законы фундаментальных и общеинженерных наук П-1 - Работая в команде, разрабатывать варианты формулирования и решения научно-исследовательских, технических, организационно-экономических и комплексных задач, применяя знания фундаментальных и общеинженерных наук
	ПК-5 - Способен предлагать актуальные методы и подходы решения научных и технологических задач в области наноматериалов, а также смежных областей	3-1 - Описывать основные научные достижения и современные методы экспериментальных и теоретических исследований П-1 - Использовать методы решения научно-технологических задач на основе анализа согласованных научных знаний
Физика наноматериалов	ОПК-1 - Способен формулировать и решать научно- исследовательские, технические, организационно- экономические и комплексные задачи, применяя фундаментальные знания	3-1 - Соотносить проблемную область с соответствующей областью фундаментальных и общеинженерных наук 3-2 - Привести примеры терминологии, принципов, методологических подходов и законов фундаментальных и общеинженерных наук, применимых для формулирования и решения задач проблемной области знания У-1 - Использовать для формулирования и решения задач проблемной области терминологию, основные принципы, методологические подходы и законы фундаментальных и общеинженерных наук У-2 - Критически оценить возможные способы решения задач проблемной области, используя знания фундаментальных и общеинженерных наук
	ПК-1 - Способен организовывать, планировать и контролировать процессы измерений параметров и свойств наноматериалов и наноструктур	3-1 - Демонстрировать понимание физико- химических свойств наноматериалов и наноструктур, устройств, принципов работы и правил эксплуатации оборудования для исследования свойств наноматериалов и наноструктур У-1 - Работать на технологическом оборудовании в соответствии с инструкциями по эксплуатации и технической документацией, получать,

ПК-5 - Способен	анализировать, обобщать данные по измерению свойств и параметров П-1 - Осуществлять планирование эксперимента, ставить и анализировать задачи для оптимизации и совершенствования исследований 3-1 - Описывать основные научные
предлагать актуальные методы и подходы решения научных и технологических задач в области наноматериалов, а также смежных областей	достижения и современные методы экспериментальных и теоретических исследований
ОПК-1 - Способен формулировать и решать научно- исследовательские, технические, организационно- экономические и комплексные задачи, применяя фундаментальные знания	3-1 - Соотносить проблемную область с соответствующей областью фундаментальных и общеинженерных наук 3-2 - Привести примеры терминологии, принципов, методологических подходов и законов фундаментальных и общеинженерных наук, применимых для формулирования и решения задач проблемной области знания У-2 - Критически оценить возможные способы решения задач проблемной области, используя знания фундаментальных и общеинженерных наук
ОПК-1 - Способен формулировать и решать научно- исследовательские, технические, организационно- экономические и комплексные задачи, применяя фундаментальные знания	3-1 - Соотносить проблемную область с соответствующей областью фундаментальных и общеинженерных наук 3-2 - Привести примеры терминологии, принципов, методологических подходов и законов фундаментальных и общеинженерных наук, применимых для формулирования и решения задач проблемной области знания У-1 - Использовать для формулирования и решения задач проблемной области терминологию, основные принципы, методологические подходы и законы фундаментальных и общеинженерных наук У-2 - Критически оценить возможные
	предлагать актуальные методы и подходы решения научных и технологических задач в области наноматериалов, а также смежных областей ОПК-1 - Способен формулировать и решать научно-исследовательские, технические, организационно-экономические и комплексные задачи, применяя фундаментальные знания ОПК-1 - Способен формулировать и решать научно-исследовательские, технические, организационно-исследовательские, технические, организационно-экономические и комплексные задачи, применяя

	области, используя знания
	фундаментальных и общеинженерных наук

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика твердого тела и твердотельная электроника

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Зайцев Дмитрий	доктор физико-	Доцент	физики
	Викторович	математических		конденсированног
		наук, без ученого		о состояния и
		звания		наноразмерных
				систем
2	Зырянова Наталья	кандидат физико-	Доцент	Департамент
	Павловна	математических		фундаментальной
		наук, доцент		и прикладной
				физики

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_1$ от $_18.01.2021$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Зайцев Дмитрий Викторович, Доцент, физики конденсированного состояния и наноразмерных систем
- Зырянова Наталья Павловна, Доцент, Департамент фундаментальной и прикладной физики
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблина 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Кристаллическая структура	Что мы понимаем под структурой. Необходимость применения универсальных методов к исследованию структуры веществ разной природы. Изменение структуры вещества при изменении температуры и давления. Современные методы исследования структуры вещества. Дифракционные методы. Резонансные методы. Основные представления о симметрии кристаллов. Решетка Бравэ кристалла. Примитивная ячейка. (ячейка Вигнера - Зейтца). Элементарная ячейка кристалла. Элементы симметрии кристаллов. Кристаллографические сингонии. Понятие группы симметрии. Точечные группы симметрии. Пространственные группы симметрии.
P2	Динамика кристаллической решетки	Теоретическое описание физических свойств диэлектриков при низких температурах. Модель кристаллической решетки Эйнштейна. Спектральная функция фононных частот. Температура Эйнштейна. Модель кристаллической решетки Дебая. Температура Дебая. Квантовая теория теплоемкости кристаллов. Ангармонические эффекты в кристаллах. Уравнение состояния кристалла. Тепловое расширение. Параметр Грюнейзена. Температурная зависимость коэффициента линейного расширения. Элементы кинетики и термодинамики газа фононов при низких температурах. Кинетическое уравнение Больцмана для газа фононов.

		Приближение времени релаксации. Нормальные процессы и процессы переброса. Фононный газ в идеальном диэлектрике. Баллистический режим движения фононов. Возможность существования в газе фононов стационарных токовых состояний. Влияние процессов переброса на движение фононов в идеальной решетке. Второй звук, условия его возникновения. Теплопроводность диэлектриков. Температурная зависимость теплопроводности. Атомарные и молекулярные криогенные кристаллы. Наведенное дипольдипольное взаимодействие. Потенциал Леннард-Джонса для атомарных криокристаллов. Уравнение соответственных состояний. Структура и физические свойства атомарных
		криокристаллов. Классические молекулярные криокристаллы. Потенциал межмолекулярного взаимодействия. Теплоемкость молекулярных криокристаллов. Квантовые кристаллы. Условие устойчивости кристаллического состояния. Параметр де Бура. Квантовая диффузия. Вакансионы. Примесоны.
Р3	Электронная структура твердых тел	Гамильтониан твердого тела. Влияние статистики электронов на энергию свободного электрона в кристалле. Зонная структура твердого тела. Электроны и дырки. Поверхность Ферми и энергия Ферми. Влияние кристаллического взаимодействия на зонную структуру твердого тела. Теорема Блоха. Блоховские волновые функции. Поведение электрона на границе зон Бриллюэна. Межэлектронное взаимодействие. Методы Хартри и Хартри-Фока. Приближенные методы расчета электронной зонной структуры. Метод ортогонализованных плоских волн. Метод псевдопотенциала. Метод сильной связи. Металлы, полупроводники, диэлектрики. Примесные полупроводники.
P4	Кинетические явления в твердых телах	Динамика электрона в твердом теле. Уравнение Больцмана для электронов. Электрический ток в твердом теле. Равновесные и неравновесные носители заряда. Межзонные переходы. Эффект Ганна. Диоды Ганна. Гальваномагнитные явления. Эффект Холла. Магнитосопротивление. Определение энергии Ферми с помощью эффекта Холла. Квантовый эффект Холла. Контактные явления. p-n переход и его выпрямляющее действие.
P5	Полупроводниковые диоды	Методы получения p-п переходов. Энергетическая диаграмма p-п перехода. Плавные и резкие p-п переходы. Вольт-амперная характеристика p-п перехода. Пространственное распределение заряда в p-п переходе. Силовые диоды. Варикапы. Барьерная и диффузная емкость p-п перехода, их влияние на быстродействие диода. Явление пробоя p-п перехода. Лавинный, туннельный и тепловой типы пробоя. Вольт-амперная характеристика p-пперехода в области пробоя. Стабилитроны. Туннельные диоды. Образование N-образной вольт-амперной характеристики туннельного диода. Туннельные диоды и диоды Ганна как генераторы Контакты металла и полупроводника. Положение уровня Ферми в области контакта. Диоды с барьером Шоттки. Волт- амперная характеристика диода Шоттки.
P6	Оптоэлектронные	Механизмы поглощения света в полупроводнике. Фотодиоды, светодиоды. Преобразователи солнечной энергии (солнечные

	приборы	элементы). Механизмы излучательной рекомбинации. Полупроводниковый инжекционный лазер и его принципы работы.
P7	Транзисторы	Биполярные транзисторы. Устройство и энергетическая диаграмма транзистора. Параметры, определяющие коэффициент усиления транзистора. Коэффициент инжекции эмиттера. Коэффициент переноса носителей через базу. Влияние напряжения на коллекторе на коэффициент усиления. Транзисторы в схеме усиления сигнала. Приборы с S-образной вольтамперной характеристикой. Тиристоры. Процессы включения и выключения тиристора. Полевые транзисторы (униполярные транзисторы). Формирование канала проводимости. Управление концентрацией носителей внешним полем (изолированный затвор). Полевые транзисторы с управляющим р-п переходом и барьером Шоттки. Приборы с зарядовой связью. ПЗС — матрица. Перемещение объемного заряда р-п под действием электрических сигналов.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика твердого тела и твердотельная электроника

Электронные ресурсы (издания)

- 1. Лебедев, А. И.; Физика полупроводниковых приборов : учебное пособие.; Физматлит, Москва; 2008; https://biblioclub.ru/index.php?page=book&id=68403 (Электронное издание)
- 2. Батаев, И. А.; Кристаллография: обозначение и вывод классов симметрии : учебное пособие.; Новосибирский государственный технический университет, Новосибирск; 2018; https://biblioclub.ru/index.php?page=book&id=575327 (Электронное издание)
- 3. Четверикова, А. Г.; Кристаллография : учебное пособие.; Оренбургский государственный университет, Оренбург; 2012; https://biblioclub.ru/index.php?page=book&id=260745 (Электронное издание)

Печатные издания

- 1. Лебедев, А. И.; Физика полупроводниковых приборов; Физматлит, Москва; 2008 (6 экз.)
- 2. Павлов, П. В., Хохлов, А. Ф.; Физика твердого тела: учебник для студентов вузов, обучающихся по направлению "Физика" и специальностям "Физика и технология материалов и компонентов электронной техники", "Микроэлектронника и полупроводниковые приборы"".; Высшая школа, Москва; 2000 (47 экз.)
- 3. Пасынков, В. В.; Полупроводниковые приборы : учеб. пособие для вузов.; Лань, Санкт-Петербург; 2006 (3 экз.)

- 4. Ю, П., Захарченя, Б. П., Решина, И. И.; Основы физики полупроводников; ФИЗМАТЛИТ, Москва; 2002 (2 экз.)
- 5. Шаскольская, М. П.; Кристаллография: Учеб. пособие.; Высшая школа, Москва; 1984 (52 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Institute of Physics (IOP). http://iopscience.iop.org/
- 2. Российский фонд фундаментальных исследований РФФИ. https://www.rfbr.ru/
- 3. Университетская библиотека онлайн: http://biblioclub.ru
- 4. Электронная научная библиотека: https://elibrary.ru
- 5. Зональная научная библиотека УрФУ: http://lib.urfu.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика твердого тела и твердотельная электроника

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблина 3 1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в	Office Professional 2003 Win32 Russian CD-ROM

		соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Физика наноматериалов

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Трефилова Анна	кандидат физико-	Доцент	физики
	Николаевна	математических		конденсированног
		наук, без ученого		о состояния и
		звания		наноразмерных
				систем

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_{1}$ от $_{18.01.2021}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Трефилова Анна Николаевна, Доцент, физики конденсированного состояния и наноразмерных систем
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение	Терминология. Место объектов нанометрического масштаба в окружающем мире. Возникновение и развитие нанотехнологии. Примеры наноматериалов и наноустройств. Обзор областей применения наноматериалов.
Р2	Фуллерены и углеродные нанотрубки	Фуллерен — новая форма углерода. Структура С60 и других кластеров углерода. Методы получения фуллеренов. Химия фуллеренов. Интеркалированные соединения фуллеренов. Эндоэдральные структуры фуллеренов. Фуллериты. Свойства фуллеритов. Превращения фуллерита С60 при высоких давлениях и темпера турах. Возможные пути использования фуллеренов. Углеродные нанотрубки. Методы получения углеродных нанотрубок. Структура нанотрубок. Физические свойства углеродных нанотрубок. Капиллярные эффекты в нанотрубках углерода. Электрические свойства углеродных нанотрубок. Эмиссионные свойства нанотрубок углерода. Магнитная восприимчивость нанотрубок. Практическое использование нанотрубок. Графен. Перспективы использования.
Р3	Особенности наноструктуры. Размерные эффекты	Классификация наноструктур. Квантовые точки. Компактированные наносистемы и нанокомпозиты. Тонкие наноструктурированные пленки. Органические соединения и полимеры. Поверхность монокристаллов, нанокластеров и пористых сорбентов. Примесные атомы на поверхности. Структурное состояние нанокристаллических твердых тел.

		Физические свойства нанокристаллических твердых тел. Механические свойства. Магнитные свойства нанокристаллических ферромагнетиков. Изменение физических свойств в зависимости от размеров кристаллитов. Влияние размера частиц на фазовые переходы.
P4	Методы исследования наноструктур	Электронная микроскопия. Просвечивающая ЭМ. Сканирующая ЭМ. Современные экспериментальные методы исследований. Сканирующая зондовая микроскопия. Особенности проведения экспериментов с нанообъектами.
P5	Методы получения наноструктур	Подходы «сверху-вниз» и «снизу-вверх» к получению наноматериалов. Высокотемпературная конденсация из газовой фазы. Жидкофазная конденсация (золь-гель технология). Диспергирование. Наноструктурирование под действием давления со сдвигом. Компактирование (консолидация) нанокластеров. Преимущества и недостатки каждого метода.
Р6	Самосборка. Нанобиотехнологии	Процесс самосборки. Белковая молекула как пример самосборки в живой природе. Применение нанотехнологий в медицине. Биосенсорная нанодиагностика. Диагностика раковых заболеваний с помощью наночастиц. Наночастицы как средства доставки лекарств. Наноинструменты и наноманипуляторы. Нанороботы для медицинских целей.
P7	Перспективы развититя нанотехнологий	Совершенствование методов синтеза и очистки, применение методов направленного роста. Новые перспективы создания программируемых материалов, биороботов, квантовых компьютеров.

- 1.3. Направление, виды воспитательной деятельности и используемые технологии Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.
- 1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика наноматериалов

Электронные ресурсы (издания)

- 1. Неволин, В. К.; Зондовые нанотехнологии в электронике : монография.; Техносфера, Москва; 2014; https://biblioclub.ru/index.php?page=book&id=260697 (Электронное издание)
- 2. Неволин, , В. К.; Зондовые нанотехнологии в электронике; Техносфера, Москва; 2014; http://www.iprbookshop.ru/26894.html (Электронное издание)

Печатные издания

- 1. Неволин, В. К.; Зондовые нанотехнологии в электронике; Техносфера, Москва; 2005 (5 экз.)
- 2. Андриевский, Р. А.; Наноструктурные материалы : учеб. пособие для вузов.; Academia, Москва; 2005 (23 экз.)
- 3. Уорден, К., Баженов, С. Л.; Новые интеллектуальные материалы и конструкции. Свойства и применение; Техносфера, Москва; 2006 (6 экз.)
- 4., Ильин, В. И., Шик, А. Я.; Физика низкоразмерных систем; Наука, Санкт-Петербург; 2001 (15 экз.)
- 5. ; Методы получения и свойства нанообъектов : учебное пособие.; Флинта, Москва; 2009 (5 экз.)
- 6. Ратнер, М., Назаренко, А. В.; Нанотехнология. Простое объяснение очередной гениальной идеи; [Вильямс], Москва; 2007 (3 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Institute of Physics (IOP). http://iopscience.iop.org/
- 2. Российский фонд фундаментальных исследований РФФИ. https://www.rfbr.ru/
- 3. Университетская библиотека онлайн: http://biblioclub.ru
- 4. Электронная научная библиотека: https://elibrary.ru
- 5. Зональная научная библиотека УрФУ: http://lib.urfu.ru
- 6. Официальные сайты международных и российских конференций по физике наноматериалов

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика наноматериалов

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в	Office Professional 2003 Win32 Russian CD-ROM

2	Практические занятия	соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет Мебель аудиторная с количеством рабочих мест в	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Office Professional 2003 Win32 Russian CD-ROM
		соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Доменная структура сегнетоэлектриков

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Шур Владимир	доктор физико-	Профессор	физики
	Яковлевич	математических		конденсированног
		наук, профессор		о состояния и
				наноразмерных
				систем

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_1$ от $_18.01.2021$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Шур Владимир Яковлевич, Профессор, физики конденсированного состояния и наноразмерных систем
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение. Основные определения	Развитие учения о сегнетоэлектричестве. Основные физические свойства сегнетоэлектриков. Температурные зависимости спонтанной поляризации и диэлектрической проницаемости при фазовых переходах первого и второго рода. Закон Кюри-Вейсса. Кристаллографическое рассмотрение сегнетоэлектричества. Сегнетоэлектрики типа смещения и типа порядок-беспорядок. Пироэлектрики, сегнетоэластики, антисегнетоэлектрики - определения и их основные свойства.
P2	Сегнетоэлектрические домены	Равновесная и метастабильная доменная структура. Методы визуализации доменной структуры сегнетоэлектриков: оптические, зондовые, эмиссионные и декорирование. Параметры равновесной доменной структуры. Нейтральные и заряженные доменные стенки. Формирование доменной структуры при сегнетоэлектрическом фазовом переходе и ее эволюция при последующем охлаждении.
Р3	Процесс экранирования. Кинетика доменов	Механизмы внешнего и объемного экранирования деполяризующих полей. Влияние собственных и искусственных диэлектрических зазоров. Связанное внутреннее поле. Механизмы переключения поляризации в сегнетоэлектриках. Кинетика доменной структуры одноосных сегнетоэлектриков в электрическом поле. Зародышеобразование. Прямое прорастание доменов. Боковое движение доменных стенок. Коалесценция. Самопроизвольное обратное переключение. Эффекты запаздывания

		экранирования. Движение доменной стенки при неэффективном экранировании. Эффекты торможения. Скачкообразное движение доменных стенок.
P4	Форма доменов	Зависимость от симметрии. Детерминированное и стохастическое зародышеобразование. Эффект сохранения формы при слиянии доменов. Форма доменов при неравновесных условиях переключения. Потеря устойчивости формы. Формирование дендритных доменов.
P5	Процессы переключения поляризации	Плавное движение доменных стенок. Формирование нанодоменов перед движущейся доменной стенкой. Коррелированное зародышеобразование. Широкая доменная граница (broad domain boundary). Разрастание доменных ансамблей. Формирование нанодоменных структур в результате импульсного лазерного нагрева. Интегральные методы исследования. Измерение петли диэлектрического гистерезиса методом Сойера-Тауера. Основные параметры петли гистерезиса. Измерение тока переключения по методике Мерца. Анализ тока переключения с использованием формулы Колмогорова-Аврами. Учет влияния конечных размеров. Изменение размерности роста - геометрические катастрофы.
Р6	Фотосегнетоэлектрические явления	Оптические свойства сегнетоэлектриков. Фотовольтаический и фотогальванический эффекты. Фоторефрактивный эффект и оптическое повреждение. Фотодоменный эффект. Генерация второй гармоники – фазовый квазисинхронизм.
P7	Применение сегнетоэлектриков	Доменная инженерия. Преобразование частоты лазерного излучения. Генерация второй гармоники в кристаллах с периодической доменной структурой. Применение сегнетоэлектриков без эффекта переключения.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Доменная структура сегнетоэлектриков

Электронные ресурсы (издания)

- 1. Неволин, В. К.; Зондовые нанотехнологии в электронике : монография.; Техносфера, Москва; 2014; https://biblioclub.ru/index.php?page=book&id=260697 (Электронное издание)
- 2. Неволин, , В. К.; Зондовые нанотехнологии в электронике; Техносфера, Москва; 2014; http://www.iprbookshop.ru/26894.html (Электронное издание)

Печатные издания

1. Голенищев-Кутузов, А. В.; Индуцированные доменные структуры в электро-

магнитоупорядоченных веществах; ФИЗМАТЛИТ, Москва; 2003 (2 экз.)

- 2. Лайнс, М., Леманов, В. В., Смоленский, Г. А.; Сегнетоэлектрики и родственные им материалы; Мир, Москва; 1981 (10 экз.)
- 3. Фридкин, В. М.; Фотосегнетоэлектрики; Наука, Москва; 1979 (8 экз.)
- 4. Струков, Б. А.; Физические основы сегнетоэлектрических явлений в кристаллах : Учеб. пособие.; Наука, Москва; 1995 (1 экз.)
- 5., Смоленский, Г. А.; Физика сегнетоэлектрических явлений; Наука, Ленинградское отделение, Ленинград; 1985 (2 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Institute of Physics (IOP). http://iopscience.iop.org/
- 2. Российский фонд фундаментальных исследований РФФИ. https://www.rfbr.ru/
- 3. Университетская библиотека онлайн: http://biblioclub.ru
- 4. Электронная научная библиотека: https://elibrary.ru
- 5. Зональная научная библиотека УрФУ: http://lib.urfu.ru
- 6. Российская конференция по физике сегнетоэлектриков. https://nanocenter.urfu.ru

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Доменная структура сегнетоэлектриков

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в	Office Professional 2003 Win32 Russian CD-ROM

		соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Оптическая обработка информации

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Шлычков Владимир	кандидат	Доцент	Департамент
	Иванович	технических наук,		фундаментальной
		доцент		и прикладной
				физики

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_1$ от $_18.01.2021$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Шлычков Владимир Иванович, Доцент, Департамент фундаментальной и прикладной физики
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Пространственно-временной сигнал	Пространственно-временной сигнал и его основные характеристики. Определение изображения как частного случая пространственно-временного сигнала. Классификация изображений. Основные статистические характеристики случайных пространственно-временных сигналов. Отношение сигнал/шум в оптическом изображении. Критерии качества оптических изображений.
P2	Линейные оптические системы	Основные свойства линейной оптической системы. Определение оптической передаточной функции. Расчет оптических передаточных функций типовых каналов формирования изображения.
Р3	Преобразование Фурье	Преобразование Фурье для многомерных сигналов и его основные свойства. Расчет спектров оптических сигналов. Определение операций свертка и корреляция.
P4	Когерентные и некогерентные системы формирования изображения	Сравнение когерентных и некогерентных систем формирования оптического изображения. Оптика спеклов.
P5	Оптическая пространственная фильтрация	Оптическая пространственная фильтрация при обработке изображений: низкочастотная, высокочастотная, полосовая фильтрация. Оптическая согласованная фильтрация. Оптические спектроанализаторы. Основные математические

		операции, реализуемые в оптических и оптико-электронных системах.
P6	Приемники ПВС	Приемники пространственно-временных сигналов (матричные, линейные). Основные технические характеристики приемников. Примеры расчета оптоэлектронных устройств с матричными и линейными приемниками. Дискретизация и растрирование оптического изображения.
P7	Обработка изображений	Основные алгоритмы обработки изображений. Сравнительный анализ цифровых, оптических, телевизионных устройств обработки изображений. Гибридные оптоэлектронные устройства.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Оптическая обработка информации

Электронные ресурсы (издания)

- 1. Якушенков, Ю. Г.; Основы оптико-электронного приборостроения : учебник.; Логос, Москва; 2013; https://biblioclub.ru/index.php?page=book&id=234010 (Электронное издание)
- 2. Якушенков, , Ю. Г.; Основы оптико-электронного приборостроения : учебник.; Логос, Москва; 2013; http://www.iprbookshop.ru/14323.html (Электронное издание)
- 3. Давыдов, В. Н.; Физические основы оптоэлектроники : учебное пособие.; ТУСУР, Томск; 2016; https://biblioclub.ru/index.php?page=book&id=480763 (Электронное издание)
- 4. Давыдов, , В. Н.; Физические основы оптоэлектроники : учебное пособие.; Томский государственный университет систем управления и радиоэлектроники, Томск; 2016; http://www.iprbookshop.ru/72209.html (Электронное издание)

Печатные издания

- 1. Гудмен, Д. У., Джозеф У., Кокин, А. А., Скроцкий, Г. В.; Статистическая оптика; Мир, Москва; 1988 (5 экз.)
- 2. Гончарский, А. В.; Введение в компьютерную оптику: Учеб. пособие для вузов.; Изд-во Моск.ун-та, Москва; 1991 (2 экз.)
- 3., Старк, Г., Васильев, А. А., Парфенов, А. В., Компанец, И. Н.; Применение методов фурье-оптики; Радио и связь, Москва; 1988 (5 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Institute of Physics (IOP). http://iopscience.iop.org/
- 2. Российский фонд фундаментальных исследований РФФИ. https://www.rfbr.ru/

- 3. Университетская библиотека онлайн: http://biblioclub.ru
- 4. Электронная научная библиотека: https://elibrary.ru
- 5. Зональная научная библиотека УрФУ: http://lib.urfu.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Оптическая обработка информации

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Физика полупроводников и диэлектриков

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Германенко Александр	доктор физико-	Профессор	физики
	Викторович	математических		конденсированног
		наук, доцент		о состояния и
				наноразмерных
				систем

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_{1}$ от $_{18.01.2021}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ

Авторы:

- Германенко Александр Викторович, Профессор, физики конденсированного состояния и наноразмерных систем
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;
Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки матариала дисциплици. Это происходит за сиет включения дополнительной информации. Пациый уровень требует умения

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	История. Основные свойства полупроводников. Технология. Применение	История открытия полупроводников. Ранние исследования. Основные свойства полупроводников. Применение полупроводников в науке и технике. Классификация полупроводников (по составу, по ширине запрещенной зоны, разделение на прямозонные и непрямозонные материалы, по магнитным свойствам). Методы выращивания полупроводниковых кристаллов: метод Чохральского; газофазная эпитаксия; молекулярно-пучковая эпитаксия. Методы получения низко-размерных структур: двумерных квантовые слоев, квантовых проволок и точек.
P2	Спектр полупроводников. Зонная структура	Элементы зонной теории. Формулировка общей квантовомеханической задачи. Роль кулоновского взаимодействия в формировании спектра. Адиабатическое приближение и его применимость. Одноэлектронное приближение. Простейшие модели: одномерный ящик и модель Кронига-Пенни. Теорема Блоха. Предсказания моделей и их соответствие реальной ситуации. Зонный характер спектра в модели Кронига-Пенни. Волновая функция электрона в периодическом потенциале. Форма краев зон. Характер движения электрона в периодическом потенциале (движение во внешнем электрическом поле). Понятие групповой скорости. Эффективная масса. Типы зонной структуры в кристаллических телах: металлы, полуметаллы, диэлектрики. Зонная структура конкретных полупроводников: германий,

P3	Дефекты в полупроводниках	кремний, полупроводники со структурой цинковой обманки. Бесщелевые и узкозонные полупроводники. Полуметаллы. Модель Кейна (характерные особенности и различные предельные случаи). Модель Латтинжера. Лёгкие и тяжёлые дырки. Энергетический спектр твердых растворов на HgCdTe и их магнитных аналогов HgMnTe. Влияние одноосного и всестороннего сжатия на спектр носителей. Энергетический спектр реальных полупроводников. Классификация дефектов. Различные виды дефектов (примеси замещения, внедрения, вакансии, наличие границы). Мелкие примесные уровни (водородоподобная примесь). Спектр и волновые функции мелких донорных и акцепторных состояний. Спектр слабо- и сильнолегированных полупроводников.
P4	Статистика полупроводников	Статистика полупроводников. Распределение Ферми-Дирака. Уровень Ферми. Вырожденный и невырожденный электронный газ. Плотность состояний. Плотность состояний в анизотропной зоне. Эффективная масса плотности состояний. Концентрация носителей заряда в зонах и на локальных уровнях. Интегралы Ферми. Решение уравнения электронейтральности для собственного полупроводника. Температурная зависимость концентрации носителей заряда в собственном полупроводнике. Решение уравнения электронейтральности в полупроводнике с одним типом однозарядных доноров. Температурная зависимость концентрации электронов в полупроводнике с одним типом однозарядных доноров. Решение уравнения электронейтральности и температурная зависимость концентрации электронов при одновременном наличии донорной и акцепторной примеси.
P5	Явления переноса	Явления электронного переноса. Электропроводность. Подвижность. Транспортное время релаксации импульса. Закон Ома в анизотропных полупроводниках. "Дрейфовая" эффективная масса. Эффект Холла (один тип носителей, двигающихся с одинаковой скоростью, малые магнитные поля). Характер движения электронов и дырок в скрещенных электрическом и магнитном полях. Тензор электропроводности, эффект Холла и магнитосопротивление в произвольном магнитном поле. Эффект Холла и магнитосопротивление для двух типов носителей заряда — электронов и дырок. Зависимость коэффициента Холла от магнитного поля и температуры.
Р6	Уравнение Больцмана	Уравнение Больцмана. Правило усреднения времени релаксации импульса. Эффект Холла и магнитосопротивление для невырожденного и вырожденного электронного газа. Холлфактор. Коэффициент магнитосопротивления. Время релаксации и вероятность квантовых переходов. Рассеяние на ионизованной примеси. Зависимость времени релаксации от энергии для различных механизмов рассеяния. Температурная зависимость подвижности.
P7	Магнитные квантовые эффекты	Магнитные квантовые эффекты. Энергетический спектр электронов и дырок в магнитном поле. Плотность состояний.

	Учет спина. Осцилляции Шубникова-де Гааза. Условия
	наблюдения. Определение концентрации и эффективной массы
	из осцилляций Шубникова-де Газа. Магнитофононный
	резонанс (МФР). Определение эффективной массы из МФР.
	Межзонное и примесное магнитное вымораживание носителей.
	Циклотронный резонанс (классическое рассмотрение).

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика полупроводников и диэлектриков

Электронные ресурсы (издания)

- 1. Бонч-Бруевич, В. Л.; Физика полупроводников; Наука, Москва; 1977; https://biblioclub.ru/index.php?page=book&id=483346 (Электронное издание)
- 2. Ансельм, А. И.; Введение в теорию полупроводников : монография.; Государственное издательство физико-математической литературы, Москва, Ленинград; 1962; https://biblioclub.ru/index.php?page=book&id=479539 (Электронное издание)
- 3. Киттель, Ч., Ч.; Введение в физику твердого тела; Наука, Москва; 1978; https://biblioclub.ru/index.php?page=book&id=483361 (Электронное издание)

Печатные издания

- 1. Бонч-Бруевич, В. Л.; Физика полупроводников; Наука, Москва; 1990 (18 экз.)
- 2. Ансельм, А. И., Алферов, Ж. И.; Введение в теорию полупроводников : учеб. пособие для студентов вузов, обучающихся по физ. и техн. специальностям.; Лань, Санкт-Петербург ; Москва ; Краснодар; 2008 (11 экз.)
- 3. Киттель, Ч., Гусев, А. А., Пахнев, А. В.; Введение в физику твердого тела; Наука, Москва; 1978 (53 экз.)
- 4. Шалимова, К. В.; Физика полупроводников: учебник [для студентов физ. и техн. специальностей].; Лань, Санкт-Петербург; Москва; Краснодар; 2010 (2 экз.)
- 5. Ю, П., Захарченя, Б. П., Решина, И. И.; Основы физики полупроводников; ФИЗМАТЛИТ, Москва; 2002 (2 экз.)
- 6. Имри, Имри Й., Булгадаев, С. А., Иоселевич, А. С., Лебедев, А. В., Щелкачев, Н. М.; Введение в мезоскопическую физику; ФИЗМАТЛИТ, Москва; 2004 (2 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Institute of Physics (IOP). http://iopscience.iop.org/
- 2. Российский фонд фундаментальных исследований РФФИ. https://www.rfbr.ru/
- 3. Университетская библиотека онлайн: http://biblioclub.ru

- 4. Электронная научная библиотека https://elibrary.ru
- 5. Зональная научная библиотека УрФУ: http://lib.urfu.ru

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика полупроводников и диэлектриков

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблина 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
3	Консультации	Мебель аудиторная с количеством рабочих мест в	Не требуется

		соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES