Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
иректор по образовательной	Ді	
деятельности		
С.Т. Князев		
С.1. Кимось		

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1154662	Фундаментальный и прикладной магнетизм

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Фундаментальная и прикладная физика	1. 03.05.02/33.01
Направление подготовки	Код направления и уровня подготовки
1. Фундаментальная и прикладная физика	1. 03.05.02

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Васьковский	доктор физико-	Заведующий	магнетизма и магнитных
	Владимир	математических	кафедрой	наноматериалов
	Олегович	наук, профессор		

Согласовано:

Управление образовательных программ

Е.С. Комарова

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Фундаментальный и прикладной магнетизм

1.1. Аннотация содержания модуля

Модуль «Фундаментальный и прикладной магнетизм» включает дисциплины, позволяющие углубить базовый уровень знаний по вопросам классического и квантового описания явления магнитного упорядочения и сопутствующих ему эффектов. Значительное внимание уделяется физике взаимодействия сред, обладающих различной магнитной структурой, с внешним магнитным полем, в том числе закономерностям перемагничивания, которые определяют техническое приложение магнетиков как в квазистатическом, так и в динамическом режимах. Наряду с этим рассматривается роль магнетизма среды и внешнего магнитного поля в формировании ряда квантовых явлений, таких как сверхпроводимость, эффект Джозефсона, квантовый эффект Холла, которые также находят применение в технике высокого уровня. Дисциплины, посвящённые квазистатике и динамике перемагничивания, предусматривают практическое знакомство студентов с соответствующими явлениями при выполнении лабораторных работ специального практикума. Освоение данного модуля является важной составляющей подготовки выпускников к реальной научной деятельности.

1.2. Структура и объем модуля

Таблина 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Основы квантовой теории магнетизма	3
2	Магнитополевые эффекты I: квазистатическое намагничивание	3
3	Магнитополевые эффекты II: магнитодинамика	4
4	Магнитополевые эффекты III: квантовые явления	4
	ИТОГО по модулю:	14

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	1. Общая физика
	2. Общий физический практикум
	3. Физика конденсированного состояния
Постреквизиты и кореквизиты	1. Методическое обеспечение научных
модуля	исследований
	2. Специальные вопросы магнетизма
	3. Физика и дизайн магнитных материалов

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Магнитополевые эффекты I: квазистатическо е намагничивание	ОПК-2 - Способен выполнять исследования при решении фундаментальных и прикладных задач, планировать и осуществлять сложные реальные или модельные эксперименты	3-1 - Демонстрировать понимание принципов, особенностей и задач проведения фундаментальных и прикладных исследований, планирования модельных или реальных экспериментов У-1 - Соотнести цель и задачи исследования с набором методов исследования, выбирать необходимое сочетание цели и средств при планировании исследований Д-1 - Демонстрировать аналитические умения и креативное мышление
	ПК-1 - Владеет методами экспериментальных и теоретических исследований и алгоритмического моделирования для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	3-1 - Сделать обзор основных методов теоретических и экспериментальных физических исследований У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы У-2 - Определять оптимальные методы физического, математического и алгоритмического моделирования при решении задач в области профессиональной деятельности
	ПК-4 - Способен применять нормы техники безопасности и охраны труда при организации работ со сложным экспериментальным оборудованием	3-1 - Сформулировать требования техники безопасности и охраны труда, пожаробезопасности и электробезопасности при работе с экспериментальным оборудованием У-1 - Самостоятельно применять требования к безопасному выполнению работ при работе со сложным экспериментальным оборудованием

		У-2 - Оказывать первую (доврачебную) помощь пострадавшему в зависимости от травмы П-1 - Иметь практический опыт применения норм техники безопасности и охраны труда при организации работ со сложным экспериментальным оборудованием
эффекты II: магнитодинамик а	ОПК-2 - Способен выполнять исследования при решении фундаментальных и прикладных задач, планировать и осуществлять сложные реальные или модельные эксперименты	3-1 - Демонстрировать понимание принципов, особенностей и задач проведения фундаментальных и прикладных исследований, планирования модельных или реальных экспериментов У-1 - Соотнести цель и задачи исследования с набором методов исследования, выбирать необходимое сочетание цели и средств при планировании исследований Д-1 - Демонстрировать аналитические умения и креативное мышление
	ПК-1 - Владеет методами экспериментальных и теоретических исследований и алгоритмического моделирования для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	3-1 - Сделать обзор основных методов теоретических и экспериментальных физических исследований У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы У-2 - Определять оптимальные методы физического, математического и алгоритмического моделирования при решении задач в области профессиональной деятельности
	ПК-4 - Способен применять нормы техники безопасности и охраны труда при организации работ со сложным экспериментальным оборудованием	3-1 - Сформулировать требования техники безопасности и охраны труда, пожаробезопасности и электробезопасности при работе с экспериментальным оборудованием У-1 - Самостоятельно применять требования к безопасному выполнению работ при работе со сложным экспериментальным оборудованием
		У-2 - Оказывать первую (доврачебную) помощь пострадавшему в зависимости от травмы

		П-1 - Иметь практический опыт применения норм техники безопасности и охраны труда при организации работ со сложным экспериментальным оборудованием
Магнитополевые эффекты III: квантовые явления	ОПК-3 - Способен анализировать, интерпретировать и обобщать результаты исследований в профессиональной области	3-1 - Демонстрировать понимание принципов и методов анализа и обобщения результатов теоретических и экспериментальных исследований, применяемых в профессиональной области У-1 - Анализировать результаты наблюдений и экспериментов, корректно интерпретировать их для формулирования заключений и выводов П-1 - Формулировать обоснованные заключения и выводы по результатам анализа научной литературы, собственных экспериментальных данных и расчетнотеоретических работ
		Д-1 - Демонстрировать умения анализировать и обобщать информацию, делать логические умозаключения
	ПК-1 - Владеет методами экспериментальных и теоретических исследований и алгоритмического	3-2 - Классифицировать основные методы математического и алгоритмического моделирования, применимые для решения задач в области профессиональной деятельности
моделирования для решения профессиональных задач в области физики магнитных явлений, медицинской и	У-2 - Определять оптимальные методы физического, математического и алгоритмического моделирования при решении задач в области профессиональной деятельности	
	теоретической физики, физики конденсированного состояния	П-1 - Осуществлять обоснованный выбор методов теоретических и экспериментальных физических исследований при решении поставленных задач
		П-2 - Разрабатывать методы физического, математического и алгоритмического моделирования при решении поставленных задач в области профессиональной деятельности
Основы квантовой теории	ОПК-1 - Способен выявлять, формулировать и решать фундаментальные и	3-1 - Демонстрировать понимание фундаментальных принципов, методов и подходов к решению фундаментальных и прикладных задач в профильной области

магнетизма	прикладные задачи в области своей профессиональной деятельности и в междисциплинарных направлениях с использованием фундаментальных знаний и практических навыков	деятельности и междисциплинарных направлениях У-1 - Выявлять и определять цели и пути решения фундаментальных и прикладных задач в профильной области деятельности, опираясь на фундаментальные законы и принципы, с использованием соответствующих целям подходов и методов Д-1 - Демонстрировать аналитические умения и креативное мышление
	ПК-1 - Владеет методами экспериментальных и теоретических исследований и алгоритмического моделирования для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	3-2 - Классифицировать основные методы математического и алгоритмического моделирования, применимые для решения задач в области профессиональной деятельности У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы У-2 - Определять оптимальные методы физического, математического и алгоритмического моделирования при решении задач в области профессиональной деятельности

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Основы квантовой теории магнетизма

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Бострем Ирина	кандидат физико-	Доцент	теоретической и
	Геннадьевна	математических		математической
		наук, доцент		физики

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_{\underline{3}}$ от $_{\underline{14.05.2021}}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Бострем Ирина Геннадьевна, Доцент, теоретической и математической физики 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение. Орбитальный и спиновый магнетизм	Электрон в магнитном поле. Уровни Ландау. Квантовый эффект Холла. Парамагнетизм Паули. Кристаллическое поле.
P2	Обменное взаимодействие	Прямой обмен. Методы Хартри-Фока. Сверхобмен. Теория Андерсона. Косвенный обмен.
Р3	Магнитные фазовые переходы.	Фазовые переходы второго порядка. Корреляционная длина. Критические экспоненты. Законы скейлинга.
P4	Теория среднего поля	Молекулярное поле. Магнитная восприимчивость и спонтанная намагниченность. Типы магнитного упорядочения.
P5	Модель Изинга и ХҮ модель.	Решение в отсутствие поля. Спиновая цепочка ½. Переходы Костерлиц-Таулесса в двумерной XY модели.
Р6	Спиновые волны	Элементарные возбуждения и магноны. Нелинейные спиновые волны. Термодинамика магнонов
P7	Квантовые спиновые цепочки	Теоремы Либа-Маттиса -Шульца и Маршалла. Нелинейная σ- модель для антиферромагниной цепочки

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направление	Вид	Технология	Компетенция	Результаты
воспитательной	воспитательной	воспитательной		обучения
		деятельности		

деятельности	деятельности			
Профессиональн ое воспитание	целенаправленна я работа с информацией для использования в практических целях	Технология формирования уверенности и готовности к самостоятельной успешной профессиональн ой деятельности	ПК-1 - Владеет методами экспериментальных и теоретических исследований и алгоритмического моделирования для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основы квантовой теории магнетизма

Электронные ресурсы (издания)

1. Вонсовский, С. В.; Магнетизм: магнитные свойства диа-, пара-, ферро-, антиферро-, и ферримагнетиков : монография.; Наука, Москва; 1971; https://biblioclub.ru/index.php?page=book&id=483412 (Электронное издание)

Печатные издания

- 1. Уайт, Р. М.; Квантовая теория магнетизма; Мир, Москва; 1972 (7 экз.)
- 2. Уайт Роберт, М., Либерман, М. А., Боровик-Романов, А. С., Питаевский, Л. П.; Квантовая теория магнетизма; Мир, Москва; 1985 (8 экз.)
- 3. Мейлихов, Е. З.; Магнетизм. Основы теории : [учебное пособие].; Интеллект, Долгопрудный; 2014 (1 экз.)
- 4. Мейлихов, Е. 3.; Магнетизм. Основы теории : [учебное пособие].; Издательский дом Интеллект, Долгопрудный; 2014 (5 экз.)
- 5. Skomski, R.; Simple models of magnetism; Oxford University Press, Oxford; 2012 (1 экз.)
- 6. Levy, L.-P.; Magnetism and superconductivity; Springer, Berlin; 2000 (1 экз.)
- 7. Изюмов, Ю. А.; Магнетизм коллективизированных электронов; Физматлит, Москва; 1994 (1 экз.)

Профессиональные базы данных, информационно-справочные системы

1. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru/rus/

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основы квантовой теории магнетизма

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Подключение к сети Интернет	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

		Рабочее место преподавателя	
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Магнитополевые эффекты I: квазистатическое намагничивание

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Васьковский Владимир	доктор физико-	Заведующий	магнетизма и
	Олегович	математических	кафедрой	магнитных
		наук, профессор		наноматериалов

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № 3 от 14.05.2021 г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Васьковский Владимир Олегович, Заведующий кафедрой, магнетизма и магнитных наноматериалов
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;
Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение	Основные физические характеристики магнетиков, определяющие качественные и количественные параметры процессов намагничивания и перемагничивания.
P2	Намагничивание монокристаллов	Кривые намагничивания неограниченных монокристаллов гексагональной и кубической симметрии вдоль основных кристаллографических направлений. Намагничивание пластины одноосного магнетика путём смещения доменных границ. Кривые намагничивания эллипсоидального магнитоодноосного образца при учёте вращения намагниченности и смещения доменных границ. Изотропный двухподрешёточный ферримагнетик: кривая намагничивания; магнитные фазовые переходы, индуцированные магнитным полем; фазовая Т-Н диаграмма. Кривая намагничивания трёхподрешёточного ферримагнетика. Магнитоодноосный антиферромагнетик: кривые намагничивания вдоль и перпендикулярно оси лёгкого намагничивания (ОЛН). Характер намагничивания вдоль ОЛН в зависимости от соотношения величин обменного взаимодействия и магнитной анизотропии. Метамагнетики. Зонные магнетики в сильном магнитном поле.

P3	Намагничивание реальных магнетиков	Основные характеристики процесса намагничивания. Эмпирический закон Релея. Намагничивание путём вращения намагниченности в слабых полях: начальная восприимчивость в поликристаллических образцах с различным характером магнитной анизотропии. Намагничивание в сильных магнитных полях: закон приближения к насыщению для одноосных и многоосных магнетиков. Закон приближения к насыщению в аморфных магнетиках. Намагничивание путём смещения доменных границ. Уравнение энергетического баланса Кондорского. Различные модели начальной восприимчивости: напряжений, гибкой доменной стенки, включений.
P4	Магнитный гистерезис	гистерезиса Релея. Диаграмма Прейзаха. Необратимое вращение вектора намагниченности в одноосном и многоосных кристаллах. Микромагнитный подход к описанию процесса перемагничивания. Модели неоднородного перемагничивания бесконечного цилиндра: "закручивание", "изгиб". Парадокс Брауна. Влияние дефектов на магнитный гистерезис, обусловленный необратимым вращением намагниченности. Особенности магнитной структуры и магнитного гистерезиса мелких частиц. Необратимое смещение доменных границ. Коэрцитивная сила в моделях напряжений, включений. Тонкие доменные границы.
P5	Решение задач	Решение оригинальных задач по основным разделам дисциплины: намагничивание монокристаллов, намагничивание реальных магнетиков, магнитный гистерезис.
36	Лабораторный практикум	Лабораторные работы в специальной учебной лаборатории по магнетизму

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн	целенаправленна	Технология	ПК-1 - Владеет	У-1 -
ое воспитание	я работа с	формирования	методами	Самостоятельно
	информацией	уверенности и	экспериментальных	формулировать
	для	готовности к	и теоретических	задачу в рамках

использования в	самостоятельной	исследований и	рассматриваемой
практических	успешной	алгоритмического	проблемы
целях	профессиональн	моделирования для	
	ой деятельности	решения	
		профессиональных	
		задач в области	
		физики магнитных	
		явлений,	
		медицинской и	
		теоретической	
		физики, физики	
		конденсированного	
		состояния	

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Магнитополевые эффекты I: квазистатическое намагничивание

Электронные ресурсы (издания)

- 1. Боровик, Е. С.; Лекции по магнетизму : курс лекций.; Физматлит, Москва; 2005; https://biblioclub.ru/index.php?page=book&id=75475 (Электронное издание)
- 2. Гуфан, , А. Ю.; Физика магнитных явлений : учебник.; Издательство Южного федерального университета, Ростов-на-Дону, Таганрог; 2020; http://www.iprbookshop.ru/115544.html (Электронное издание)

Печатные издания

- 1. Боков, В. А.; Физика магнетиков : учеб. пособие для вузов.; ФТИ им. А. Ф. Иоффе РАН, Санкт-Петербург; 2002 (50 экз.)
- 2. Иванов, С. В.; Избранные главы физики: Магнетизм. Магнитный резонанс. Фазовые переходы: курс лекций.; [Изд-во ЛКИ, Москва; 2008] (1 экз.)
- 3. Мушников, Н. В.; Магнетизм и магнитные фазовые переходы : учебное пособие.; Издательство Уральского университета, Екатеринбург; 2017 (5 экз.)

Профессиональные базы данных, информационно-справочные системы

1. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru/rus/

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Магнитополевые эффекты I: квазистатическое намагничивание

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
3	Лабораторные занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
4	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES

5	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
6	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Магнитополевые эффекты II: магнитодинамика

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Васьковский Владимир	доктор физико-	Заведующий	магнетизма и
	Олегович	математических	кафедрой	магнитных
		наук, профессор		наноматериалов

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № 3 от 14.05.2021 г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Васьковский Владимир Олегович, Заведующий кафедрой, магнетизма и магнитных наноматериалов
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины*	Содержание
Раздел 1	Введение	Динамические магнитные характеристики: динамическая петля гистерезиса и её количественные параметры; комплексная магнитная проницаемость и её связь с параметрами электрической цепи. Принципы измерения динамических магнитных характеристик.
Раздел 2	Влияние вихревых токов на магнитные свойства магнетиков	Магнитное поле в проводящем ферромагнитном полупространстве. Влияние вихревых токов на составляющие комплексной магнитной проницаемости и потери энергии на перемагничивание. Роль доменных границ в формировании потерь энергии. Пути снижения потерь энергии в электротехнической стали.
Раздел 3	Резонансные и релаксационные явления в области средних частот перемагничивания	Переменное магнитное поле в диэлектрике. Размерный резонанс. Магнитострикционный резонанс. Магнитное последействие. Уравнение магнитной вязкости. Релаксационный спектр. Влияние магнитного последействия на составляющие комплексной магнитной проницаемости. Термическое последействие. Диффузионное последействие и связанные с ним особенности свойств магнетиков.
Раздел 4	Магнитный резонанс	Природа магнитного резонанса. Уравнение Ландау-Лифшица. Прецессия магнитного момента без затухания и при наличии диссипации энергии. Классическая интерпретация природы магнитного резонанса. Элементы классической теории магнитного резонанса. Магнитный спектр. Ферромагнитный

		резонанс в образцах конечных размеров. Влияние магнитной анизотропии и доменных границ на частоту ФМР. Магнитный резонанс в ферри- и антиферромагнетиках. Спиновые волны в линейной цепочке магнитных моментов. Спин-волновой резонанс. Релаксация магнитного момента. Уравнение Блоха. Ядерный магнитный резонанс. Его особенности в сильномагнитных веществах. Эффект Мёссбауэра. Условия наблюдения. Факторы, влияющие на резонансный спектр.
Раздел 5	Элементы динамики доменных границ	Механизм движения доменных границ с позиции уравнения Ландау-Лифшица. Эффективная масса доменной границы. Уравнение Дёринга. Релаксация и резонанс доменных границ.
Раздел 6	Решение задач	Решение оригинальных задач по тематике дисциплины: магнитодинамика низких и средних частот перемагничивания; магнитный резонанс; динамика доменных границ.
Раздел 7	Лабораторные работы	Лабораторные работы в специализированной учебной лаборатории по магнетизму

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	целенаправленна я работа с информацией для использования в практических целях	Технология формирования уверенности и готовности к самостоятельной успешной профессиональн ой деятельности	ПК-1 - Владеет методами экспериментальных и теоретических исследований и алгоритмического моделирования для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-2 - Определять оптимальные методы физического, математического и алгоритмического моделирования при решении задач в области профессионально й деятельности

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Магнитополевые эффекты II: магнитодинамика

Электронные ресурсы (издания)

- 1. Шавров, В. Г.; Ферромагнитный резонанс в условиях ориентационного перехода : монография.; Физматлит, Москва; 2018; https://biblioclub.ru/index.php?page=book&id=612825 (Электронное издание)
- 2. Шавров, В. Г.; Динамика намагниченности в условиях изменения её ориентации : монография.; Физматлит, Москва; 2019; https://biblioclub.ru/index.php?page=book&id=612823 (Электронное издание)
- 3. Боровик, Е. С.; Лекции по магнетизму : курс лекций.; Физматлит, Москва; 2005; https://biblioclub.ru/index.php?page=book&id=75475 (Электронное издание)
- 4. Стародубцев, Ю. Н.; Магнитомягкие материалы: энциклопедический словарь-справочник: словарь.; Техносфера, Москва; 2011; https://biblioclub.ru/index.php?page=book&id=496593 (Электронное издание)

Печатные издания

- 1. Боровик, Е. С., Еременко, В. В., Мильнер, А. С.; Лекции по магнетизму; ФИЗМАТЛИТ, Москва; 2005 (2 экз.)
- 2. Боровик, Е. С.; Лекции по магнетизму; ФИЗМАТЛИТ, Москва; 2005 (22 экз.)
- 3. Стародубцев, Ю. Н.; Физические свойства и применение магнитомягких материалов : [монография].; Горячая линия Телеком, Москва; 2020 (2 экз.)
- 4. Стародубцев, Ю. Н.; Магнитомягкие материалы : энцикл. слов.-справ..; Техносфера, Москва; 2011 (2 экз.)
- Филиппов, Б. Н.; Ч. 2 : [в 2 ч.].; УрО РАН, Екатеринбург; 2020 (2 экз.)

Профессиональные базы данных, информационно-справочные системы

Зональная научная библиотека УрФУ. URL: http://lib2.urfu.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Магнитополевые эффекты ІІ: магнитодинамика

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№	Виды занятий	Оснащенность специальных	Перечень лицензионного
п/п		помещений и помещений для	программного обеспечения
		самостоятельной работы	

1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc
3	Лабораторные занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
4	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Подключение к сети Интернет	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
5	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
6	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc

Персональные компьютеры по количеству обучающихся	Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
Подключение к сети Интернет	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Магнитополевые эффекты III: квантовые явления

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Памятных Евгений	доктор физико-	Профессор	теоретической и
	Алексеевич	математических		математической
		наук, профессор		физики

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № 3 от 14.05.2021 г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Памятных Евгений Алексеевич, Профессор, теоретической и математической физики 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Квантовая статистическая термодинамика электронной системы металлов	 Электронная система металлов в квантующем магнитном поле. Основные соотношения квантовой статистической термодинамики. Термодинамические восприимчивости в различных условиях.
P2	Магнитные квантовые осцилляционные эффекты	 Эффект де Гааза – ван Альфена. Магнитотермические осцилляции. Квантовая магнитострикция. Методы наблюдения квантовых осцилляционных эффектов. Температурная зависимость амплитуды осцилляций и определение эффективных масс электронов.
Р3	Неустойчивости намагниченности в квантующем магнитном поле (эффект Шенберга)	 Эффект Шенберга (низкотемпературные неустойчивости намагниченности электронной жидкости). Квантовые осцилляции в условиях эффекта Шенберга. Квантовые осцилляции и эффект Шенберга в релятивистском электронном газе.

P4	Квантовые осцилляции в неоднородном магнитном поле.	 - Магнитные квантовые осцилляции в неоднородном магнитном поле. - Неусточивости относительно возникновения статических волн намагниченности.
Р5	Электромагнитные волны в металлах	 Продольные электронные волны – плазмоны. Поверхностные плазмоны. Циклотронные электромагнитные волны. Вращение плоскости поляризации в магнитном поле. Низкочастотные спиральные электромагнитные волны – геликоны. Спиновые волны в металлах.
P6	Квантовые волны в металлах	Электромагнитные волны в металлах в условиях квантования спектра энергий электронов.Спиновые квантовые волны.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	целенаправленна я работа с информацией для использования в практических целях	Технология формирования уверенности и готовности к самостоятельной успешной профессиональн ой деятельности	ОПК-3 - Способен анализировать, интерпретировать и обобщать результаты исследований в профессиональной области	3-1 - Демонстрировать понимание принципов и методов анализа и обобщения результатов теоретических и экспериментальн ых исследований, применяемых в профессионально й области

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации .

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Магнитополевые эффекты III: квантовые явления

Электронные ресурсы (издания)

- 1. Гриб, А. А.; Квантовые эффекты в интенсивных внешних полях: методы и результаты, не связанные с теорией возмущений : монография.; Атомиздат, Москва; 1980; https://biblioclub.ru/index.php?page=book&id=499384 (Электронное издание)
- 2. Абрикосов, А. А.; Методы квантовой теории поля в статистической физике; Физматгиз, Москва; 1962; https://biblioclub.ru/index.php?page=book&id=483334 (Электронное издание)
- 3. Пайнс, Д., Д., Абрикосов, А. А.; Теория квантовых жидкостей: нормальные ферми-жидкости; Мир, Москва; 1967; https://biblioclub.ru/index.php?page=book&id=483393 (Электронное издание)

Печатные издания

- 1. Окулов, В. И.; Низкотемпературные магнитные квантовые осцилляции в металлах : учеб. пособие для вузов.; Изд-во Урал. ун-та, Екатеринбург; 2004 (40 экз.)
- 2. Зырянова, Н. П., В. И.; Электронные квантовые волны в магнитном поле; URSS, Mockba; 2020 (1 экз.)
- 3. Крэкнелл, А. Ф., Кравченко, В. Я, Уонг, К.; Поверхность Ферми: Понятие поверхности Ферми, ее определение и использование в физике металлов: Пер. с англ..; Атомиздат, Москва; 1978 (4 экз.)
- 4. Крэкнелл, А. Ф.; Поверхность Ферми: Понятие поверхности Ферми, ее определение и использование в физике металлов.; Атомиздат, Москва; 1978 (5 экз.)
- 5. Шенберг, Шенберг Д., Каганов, М. И.; Магнитные осцилляции в металлах; Мир, Москва; 1986 (1 экз.)
- 6. , Варшавская, Л. С., Займан, Д. М., Пиппард, А., Хейне, В., Шенберг, Д.; Физика металлов : В 2 т. Т. 1. Электроны ; Мир, Москва; 1972 (8 экз.)
- 7. Лифшиц, И. М.; Электронная теория металлов; Наука, Москва; 1971 (15 экз.)
- 8. Абрикосов, А. А., Фальковский, Л. А.; Основы теории металлов : [учеб. пособие].; ФИЗМАТЛИТ, Москва; 2010 (1 экз.)
- 9. Пайнс, Д.; Теория квантовых жидкостей: Нормальные ферми-жидкости.; Мир, Москва; 1967 (5 экз.)
- 10. Платцман, Ф., Мейлихов, Е. З., Скобов, В. Г.; Волны и взаимодействия в плазме твердого тела; Мир, Москва; 1975 (1 экз.)
- 11. Уайт Роберт, М., Либерман, М. А., Боровик-Романов, А. С., Питаевский, Л. П.; Квантовая теория магнетизма; Мир, Москва; 1985 (8 экз.)

Профессиональные базы данных, информационно-справочные системы

elar.urfu.ru

lib.urfu.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

- 1. Российская государственная библиотека. URL: http://www.rsl.ru
- 2. Государственная публичная научно-техническая библиотека России. URL: http://www.gpntb.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Магнитополевые эффекты III: квантовые явления

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Персональные компьютеры по количеству обучающихся	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA1 ShrdSvr ALNG SubsVL MVL PerUsr Faculty EES

	Подключение к сети Интернет	