Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
иректор по образовательной	Ді	
деятельности		
С.Т. Князев		
С.1. Кимось		

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1146373	Математическое моделирование в физике

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Физика	1. 03.03.02/33.01
Направление подготовки	Код направления и уровня подготовки
1. Физика	1. 03.03.02

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Тебеньков	кандидат	Доцент	физики
	Александр	физико-		конденсированного
	Владимирович	математических		состояния и
		наук, без		наноразмерных систем
		ученого звания		

Согласовано:

Управление образовательных программ

Е.С. Комарова

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Математическое моделирование в физике

1.1. Аннотация содержания модуля

В модуль входят дисциплины «Гидродинамика» и «Математическое моделирование молекулярных процессов». Дисциплина «Математическое моделирование молекулярных процессов» дополняет знания, полученные студентами при изучении модуля «Компьютерные методы в физике». Рассматриваются вопросы численного моделирования молекулярных систем на принципов молекулярно-кинетической теории, стохастические базовых молекулярных процессов. Даются динамические модели молекулярных процессов, изучаются основные физические свойства молекулярных систем. Излагается программная реализация молекулярно-динамической модели. Изучается применение изложенных методов к исследованию микрогетерогенных систем. Целью курса «Гидродинамика» является усвоение студентами физических основ и моделей механики жидкости и газа. Студенты изучают физико-математические модели гидродинамики, приобретают навыки решения фундаментальных и прикладных задач ламинарного и турбулентного движения жидкости, получают знания о моделях и методах описания движения жидкости в пограничном слое, закономерностях сверхзвукового движения газов и теории ударных волн. В рамках модуля предполагается выполнение и защита междисциплинарного курсового проекта.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Проект по модулю «Математическое моделирование в физике»	3
2	Математическое моделирование молекулярных процессов	3
3	Гидродинамика	3
	ИТОГО по модулю:	9

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	1. Математические основы профессионально	
	деятельности	
	2. Общий физический практикум	
Постреквизиты и кореквизиты	1. Общая физика	
модуля		

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Гидродинамика	УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения	3-3 - Объяснять основные принципы критического мышления, методы анализа и оценки достижений современной цивилизации, включая достижения глобальной цифровизации 3-9 - Демонстрировать понимание смысла
	поставленных задач, в том числе в цифровой среде	построения логических формализованных систем, своеобразие системного подхода к изучению мышления по сравнению с другими науками
		3-10 - Демонстрировать понимание научной, в том числе физической, картины мира, с позиций системного подхода к познанию важнейших принципов и общих законов, лежащих в основе окружающего мира
		У-1 - Осмысливать явления окружающего мира во взаимосвязи, целостности и развитии, выстраивать логические связи между элементами системы
		У-4 - Самостоятельно вырабатывать технологии критического мышления как способа противодействия неконструктивному коммуникативному и социальному влиянию
		У-11 - Анализировать, сопоставлять и систематизировать информацию, выводить умозаключения, опираясь на законы логики, и правильно формулировать суждения для решения поставленных задач
		П-2 - Определять пути решения поставленных задач, в том числе в цифровой среде, опираясь на методики поиска, системного анализа и коррекции информации
		П-7 - Иметь опыт разработки вариантов решения поставленных задач, совершая мыслительные процедуры и операции в соответствии с законами логики и правилами мышления

		Д-1 - Проявлять способность к логическому и критическому мышлению
	ОПК-1 - Способен использовать фундаментальные знания, полученные в области математических и естественных наук, в профессиональной деятельности	3-2 - Интерпретировать основные теоретические положения фундаментальных разделов естественных наук, необходимые для освоения компетенций по профилю деятельности
		У-1 - Определять пути решения задач профессиональной деятельности, опираясь на знания основных закономерностей, законов, теории математики
		П-1 - Демонстрировать навыки применения простейших математических теорий и моделей для решения задач профессиональной деятельности
		Д-1 - Демонстрировать навыки самообразования
	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	3-1 - Знать основные методы теоретических и экспериментальных физических исследований У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы П-1 - Предлагать использование методов теоретических и экспериментальных физических исследований при решении поставленных задач
	ПК-2 - Способен создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с	3-1 - Сделать обзор основных методов физического, математического и алгоритмического моделирования, применимых для формализации и решения задач в области профессиональной деятельности
	учетом границ применимости моделей	У-1 - Определять оптимальные методы физического, математического и алгоритмического моделирования при решении задач в области профессиональной деятельности
		П-1 - Предлагать и разрабатывать методы физического, математического и алгоритмического моделирования при

		решении поставленных задач в области профессиональной деятельности
Математическое моделирование молекулярных процессов	ОПК-1 - Способен использовать фундаментальные знания, полученные в области математических и естественных наук, в профессиональной деятельности	3-1 - Демонстрировать понимание основных закономерностей, законов, теорий математики, их взаимосвязь с другими дисциплинами
		3-2 - Интерпретировать основные теоретические положения фундаментальных разделов естественных наук, необходимые для освоения компетенций по профилю деятельности
		У-1 - Определять пути решения задач профессиональной деятельности, опираясь на знания основных закономерностей, законов, теории математики
		У-2 - Анализировать результаты наблюдений и экспериментов с использованием знаний фундаментальных разделов естественных наук и объективных законов природы
		П-1 - Демонстрировать навыки применения простейших математических теорий и моделей для решения задач профессиональной деятельности
		П-2 - Демонстрировать навыки использования основных естественнонаучных законов, теорий и принципов в важнейших практических приложениях
		Д-1 - Демонстрировать навыки самообразования
	ПК-1 - Способен использовать знания фундаментальных	3-1 - Знать основные методы теоретических и экспериментальных физических исследований
	разделов общей и теоретической физики для решения	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы
	профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики	П-1 - Предлагать использование методов теоретических и экспериментальных физических исследований при решении поставленных задач
	конденсированного состояния	

	ПК-2 - Способен создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей	3-1 - Сделать обзор основных методов физического, математического и алгоритмического моделирования, применимых для формализации и решения задач в области профессиональной деятельности У-1 - Определять оптимальные методы физического, математического и алгоритмического моделирования при решении задач в области профессиональной деятельности П-1 - Предлагать и разрабатывать методы физического, математического и
		алгоритмического моделирования при решении поставленных задач в области профессиональной деятельности
Проект по модулю «Математическо е моделирование в физике»	ОПК-2 - Способен проводить под научным руководством исследования на основе современных методов в конкретной области профессиональной деятельности	3-1 - Демонстрировать понимание теоретических основ методов, используемых для проведения научных исследований в профильной области У-1 - Соотносить цель и задачи исследования с набором методов исследования, выбирать необходимое сочетание цели и средств П-1 - Иметь опыт выполнения стандартных исследований с использованием серийного научного и технологического оборудования, стандартной методологии и методов исследований Д-1 - Проявлять ответственность за проводимые исследования Д-2 - Проявлять заинтересованность в содержании и результатах исследовательской работы
	ОПК-3 - Способен систематизировать, анализировать и обобщать результаты научных исследований на основе информационной и библиографической	У-3 - Интерпретировать результаты собственных исследований, соотнося их с данными научной литературы, формулировать заключения и выводы по результатам исследований П-1 - Иметь опыт представления обобщенных результатов исследовательской деятельности и их оформления в виде
	культуры	текстовых, графических и иных материалов в соответствии с требованиями

	П-3 - Иметь опыт подготовки и оформления отчетов по лабораторным работам, практикам, научным исследованиям на основе информационной и библиографической культуры
--	--

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математическое моделирование молекулярных процессов

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень,	Должность	Подразделение
J12 II/II	Фамилия имя Отчество	ученое звание	должность	
1	Проценко Сергей	кандидат физико-	Преподавате	департамент
	Павлович	математических	ЛЬ	фундаментальной
		наук, старший		и прикладной
		научный		физики
		сотрудник		
2	Тебеньков Александр	кандидат физико-	Доцент	физики
	Владимирович	математических		конденсированног
		наук, без ученого		о состояния и
		звания		наноразмерных
				систем

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № $_1$ от $_18.01.2021$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ

Авторы:

- Проценко Сергей Павлович, Преподаватель, департамент фундаментальной и прикладной физики
- Тебеньков Александр Владимирович, Доцент, физики конденсированного состояния и наноразмерных систем
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблипа 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение	Предмет и задачи методов компьютерного моделирования. Место компьютерных экспериментов (методов компьютерного моделирования) в молекулярной физике.
P2	Описание молекулярных систем на базе первых принципов молекулярно-кинетической теории вещества	Наблюдаемые значения. Усреднение функций динамических переменных по ансамблю и по времени. Эргодичность. Базовые методы моделирования. Детерминистические и стохастические методы моделирования. Описание модельных систем. Размерный эффект. Граничные условия. Периодические граничные условия. Потенциалы межмолекулярного взаимодействия в компьютерных моделях. Определение потенциальной энергии системы взаимодействующих частиц. Правило ближайшего образа. Обрезание короткодействующего потенциала взаимодействия. Учет бесконечного однородного окружения поправкой к потенциальной энергии. Потенциал Леннард-Джонса, его модификация в компьютерной модели. Параметры потенциала Леннард-Джонса. Приведенные единицы.
Р3	Стохастические модели вещества	Метод Монте-Карло для канонического ансамбля. Метод Монте-Карло. Марковский процесс. Среднее по цепи Маркова. Переходная вероятность в случае NVT-ансамбля. Задание начальной конфигурации. Способ изменения состояния. Условия принятия состояния. Алгоритм МК моделирования в

		NVT-ансамбле. Метод Монте-Карло для NpT- ансамбля. Интеграл движения в NpT- ансамбле. Способ изменения состояния в NpT-ансамбле. Переходная вероятность в случае NpT-ансамбля. Алгоритм МК моделирования в случае NpT-ансамбля. Метод Монте-Карло для большого канонического ансамбля. Независимые переменные в БКА. Способы изменения состояния в МК модели БКА-ансамбля. Переходные вероятности для случаев рождения и уничтожения частицы. Модели Изинга. Гамильтониан модели Изинга. Алгоритм метода МК для модели Изинга.
P4	Динамические модели вещества	Метод молекулярной динамики, общие положения. Первая гипотеза классической молекулярной теории и усреднение функций динамических переменных по времени. Уравнения движения системы взаимодействующих частиц. Введение в численные методы решения дифференциальных уравнений. Разложение функции в ряд Тейлора. Одношаговая схема численного интегрирования дифференциального уравнения. Двухшаговая схема численного интегрирования дифференциального уравнения. Метод молекулярной динамики для микроканонического ансамбля Численные схемы интегрирования уравнений движения. Алгоритм Верле для NVE-ансамбля. Алгоритм Бимона для NVE-ансамбля. Задание начальных условий (координат, скоростей). Выбор временного шага интегрирования. Ускорение частиц под действием межмолекулярных взаимодействий. Оптимизация МД эксперимента. Список взаимодействующих соседей. Молекулярно-динамическое моделирование в изотермических условиях. Дифференциальные уравнения движения с диссипативной силой. Условие постоянства мгновенного значения температуры. Молекулярно-динамическое моделирование в изобарически-изоэнтальпическом ансамбле). Гамильтониан системы с масштабируемым объемом, обобщенная масса. Хаотизация нелинейных систем. Хаотическое движение динамических систем. Логистическое уравнение, одномерное отображение, устойчивая неподвижная точка, бифуркация, аттрактор. Хаотизация и необратимость в механической системе взаимодействующих частиц.
P5	Термодинамические, кинетические и структурные свойства в молекулярных моделях.	Термодинамические параметры. Потенциальная, внутренняя, кинетическая энергии, вириал, температура, давление. Флуктуации термодинамических величин. Теплоемкость Сv, термический коэффициент давления, изотермическая и адиабатическая сжимаемости. Простые свойства переноса. Среднеквадратичное смещение. Автокорреляционная функция скорости. Определение коэффициента самодиффузии. Частотный спектр. Структурные свойства. Функция радиального распределения. Координационное число. Структурный фактор. Метод статистической геометрии. Визуализация траекторий движения.
P6	Программная реализация молекулярно-динамической модели	Пакет LAMMPS для параллельного молекулярно- динамического моделирования систем на многопроцессорных вычислительных системах.

		Термодинамические и структурные свойства
		конденсированных фаз. Частота зародышеобразования и ее
		связь с характеристиками микрофазы. Зародышевая
	Применение молекулярно-	микрокапля как объект молекулярного моделирования.
	динамического	Зародышевая микрокапля в равновесии с паром. Профиль
P7	моделирования для	плотности микрогетерогенной системы. Зависимости
	исследования однородных и	плотности жидкости и пара от радиуса межфазной
	микрогетерогенных систем	поверхности. Температурная зависимость поверхностного
		натяжения на искривленной и плоской границе раздела фаз.
		Зависимость поверхностного натяжения от радиуса межфазной
		поверхности и ее асимптотика.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	профориентацио нная деятельность	Технология самостоятельной работы	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Математическое моделирование молекулярных процессов

Электронные ресурсы (издания)

- 1. Прудников, В. В.; Фазовые переходы и методы их компьютерного моделирования : учебное пособие.; Физматлит, Москва; 2009; https://biblioclub.ru/index.php?page=book&id=68374 (Электронное издание)
- 2. Алексеев, Д. В.; Компьютерное моделирование физических задач в Microsoft Visual Basic; СОЛОН-ПРЕСС, Москва; 2009; https://biblioclub.ru/index.php?page=book&id=117674 (Электронное издание)
- 3. Дьяконов, В. П.; VisSim+Mathcad+MATLAB. Визуальное математическое моделирование :

- практическое пособие.; СОЛОН-ПРЕСС, Москва; 2008; https://biblioclub.ru/index.php?page=book&id=117681 (Электронное издание)
- 4. Губарь, Ю. В.; Введение в математическое моделирование : практическое пособие.; Интернет-Университет Информационных Технологий (ИНТУИТ), Москва; 2007; https://biblioclub.ru/index.php?page=book&id=233992 (Электронное издание)
- 5. Ашихмин, , В. Н.; Введение в математическое моделирование : учебное пособие.; Логос, Москва; 2004; http://www.iprbookshop.ru/9063.html (Электронное издание)
- 6. Губарь, , Ю. В.; Введение в математическое моделирование : учебное пособие для спо.; Профобразование, Саратов; 2021; http://www.iprbookshop.ru/102184.html (Электронное издание)
- 7. Семенов, , М. Е.; Математическое моделирование физических процессов : учебное пособие.; Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, Воронеж; 2016; http://www.iprbookshop.ru/72919.html (Электронное издание)

Печатные издания

- 1. Прудников, В. В., Вакилов, А. Н., Прудников, П. В.; Фазовые переходы и методы их компьютерного моделирования: учеб. пособие для студентов вузов по направлению "Приклад. математика и физика".; ФИЗМАТЛИТ, Москва; 2009 (2 экз.)
- 2. Алексеев, Д. В.; Компьютерное моделирование физических задач в Microsoft Visual Basic; СОЛОН-Пресс, Москва; 2004 (24 экз.)
- 3. Короткий, А. И., Гальперин, Л. Г., Сесекин, А. Н.; Математическое моделирование физических процессов: учеб. пособие.; УГТУ-УПИ, Екатеринбург; 2004 (20 экз.)
- 4. Проценко, С. П.; Компьютерное моделирование молекулярных систем : Учеб. пособие.; Изд-во УрГУ, Екатеринбург; 1995 (1 экз.)
- 5. Хеерман, Д. В., Дитер В.; Методы компьютерного эксперимента в теоретической физике Вып. 1.; Наука, Москва; 1990 (11 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Электронная научная библиотека https://elibrary.ru
- 2. Университетская библиотека онлайн: http://biblioclub.ru
- 3. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Математическое моделирование молекулярных процессов

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Периферийное устройство Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Mathematica 11 Network Increment Standard 15-Users Bundled List Price with Service Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Turbo Pascal 7.0 for DOS
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Mathematica 11 Network Increment Standard 15-Users Bundled List Price with Service Office Professional 2003 Win32 Russian CD-ROM

		Персональные компьютеры по количеству обучающихся	Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
		Подключение к сети Интернет	Turbo Pascal 7.0 for DOS
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Гидродинамика

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Тебеньков Александр	кандидат физико-	Доцент	физики
	Владимирович	математических		конденсированног
		наук, без ученого		о состояния и
		звания		наноразмерных
				систем
2	Черняк Владимир	доктор физико-	профессор	кафедра физики
	Григорьевич	математических		конденсированног
		наук, профессор		о состояния и
				наноразмерных
				систем

Рекомендовано учебно-методическим советом института Естественных наук и математики

Протокол № 1 от 18.01.2021 г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ

Авторы:

- Тебеньков Александр Владимирович, Доцент, физики конденсированного состояния и наноразмерных систем
- Черняк Владимир Григорьевич, профессор, кафедра физики конденсированного состояния и наноразмерных систем
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблина 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Идеальная жидкость	Модель идеальной жидкости. Замкнутая система уравнений движения идеальной жидкости. Изоэнтропическое движение. Уравнение Бернулли. Вихревое движение. Потенциальное движение. Методы описания движения идеальной жидкости. Парадокс Даламбера. Эффект Магнуса.
P2	Вязкая жидкость	Уравнение Навье – Стокса. Граничные условия. Вихревое движение вязкой жидкости. Диссипация кинетической энергии. Течения Куэтта и Пуазейля. Движение вязкой жидкости между вращающимися цилиндрами. Задача Стокса.
Р3	Методы подобия и размерности	Подобие гидродинамических движений. Коэффициенты сопротивления. Метод размерностей физических величин.
P4	Турбулентность	Устойчивость стационарного течения жидкости. Уравнения Рейнольдса. Тензор турбулентных напряжений. Теория Прандтля. Развитая турбулентность. Закон Колмогорова – Обухова.
P5	Пограничный слой	Уравнения Прандтля. Обтекание полубесконечной пластины (1). Толщина пограничного слоя. Интегральное соотношение Кармана. Обтекание полубесконечной пластины (2). Отрыв пограничного слоя. Турбулентный пограничный слой.

Р6	Параметры газа, движущегося с дозвуковой и сверхзвуковой скоростями	Термодинамические параметры газа в заторможенном потоке. Стационарный одномерный поток сжимаемого газа. Сопло Лаваля. Истечение газа из резервуара через сужающийся насадок.
P7	Ударные волны	Конус Маха. Поверхности разрыва. Ударная адиабата (адиабата Гюгонио). Прямая ударная волна в идеальном газе. Ударные волны слабой интенсивности. Ударная волна при взрыве.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблина 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	профориентацио нная деятельность	Технология самостоятельной работы	ПК-1 - Способен использовать знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач в области физики магнитных явлений, медицинской и теоретической физики, физики конденсированного состояния	У-1 - Самостоятельно формулировать задачу в рамках рассматриваемой проблемы

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Гидродинамика

Электронные ресурсы (издания)

- 1. Черняк, В. Г.; Механика сплошных сред : учебное пособие.; Физматлит, Москва; 2006; https://biblioclub.ru/index.php?page=book&id=69276 (Электронное издание)
- 2. Ханефт, А. В.; Механика сплошных сред : учебное пособие. 1. Гидродинамика; Кемеровский государственный университет, Кемерово; 2018; https://biblioclub.ru/index.php?page=book&id=495208 (Электронное издание)
- 3. Пивнев, П. П.; Механика сплошных сред жидкости и газы: учебное пособие.; Южный федеральный университет, Ростов-на-Дону, Таганрог; 2019; https://biblioclub.ru/index.php?page=book&id=577681 (Электронное издание)

Печатные излания

- 1. Ландау, Л. Д.; Механика сплошных сред; Гостехтеориздат, Москва; 1954 (3 экз.)
- 2. Дроздова, Ю. А., Эглит, М. Э.; Механика сплошных сред. Теория и задачи : учеб. пособие для студентов вузов, обучающихся по специальности 130503 "Разработка и эксплуатация нефтяных и газовых месторождений" направления подгот. дипломир. специалистов 130500 "Нефтегазовое дело".; ЦентрЛитНефтеГаз, Москва; 2010 (1 экз.)
- 3. Черняк, В. Г.; Механика сплошных сред : учебное пособие для вузов.; ФИЗМАТЛИТ, Москва; 2006 (98 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Электронная научная библиотека https://elibrary.ru
- 2. Университетская библиотека онлайн: http://biblioclub.ru
- 3. Зональная научная библиотека УрФУ. URL: http://lib.urfu.ru

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Гидродинамика

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в	Office Professional 2003 Win32 Russian CD-ROM

		соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется