ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Физика полупроводников и диэлектриков

 Код модуля
 Модуль

 1155950(2)
 Физика и технологии микро- и наноэлектроники

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Германенко	доктор физико-	Профессор	физики
	Александр	математических		конденсированного
	Викторович	наук, доцент		состояния и
				наноразмерных систем

Согласовано:

Управление образовательных программ Е.С. Комарова

Авторы:

• Германенко Александр Викторович, Профессор, физики конденсированного состояния и наноразмерных систем

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Физика полупроводников и диэлектриков

1.	Объем дисциплины в	4
	зачетных единицах	
2.	Виды аудиторных занятий	Лекции
		Практические/семинарские занятия
3.	Промежуточная аттестация	Экзамен
4.	Текущая аттестация	Контрольная работа 2

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Физика полупроводников и диэлектриков

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

Код и наименование компетенции	Планируемые результаты обучения (индикаторы)	Контрольно-оценочные средства для оценивания достижения результата обучения по дисциплине
1	2	3
ОПК-1 -Способен формулировать и решать научно- исследовательские, технические, организационно- экономические и комплексные задачи, применяя фундаментальные знания	3-1 - Соотносить проблемную область с соответствующей областью фундаментальных и общеинженерных наук 3-2 - Привести примеры терминологии, принципов, методологических подходов и законов фундаментальных и общеинженерных наук, применимых для формулирования и решения задач проблемной области знания У-2 - Критически оценить возможные способы решения задач проблемной области, используя знания фундаментальных и общеинженерных наук	Контрольная работа № 1 Контрольная работа № 2 Лекции Практические/семинарские занятия Экзамен

- 3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)
- 3.1. Процедуры текущей и промежуточной аттестации по дисциплине

1. Лекции: коэффициент значимости совокупных резуль — 0.80	татов лекциоі	нных занятий
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
контрольная работа № 1	2,8	50
контрольная работа № 2	2,14	50
Весовой коэффициент значимости результатов текущей атте	стации по лек	циям – 0.50
Промежуточная аттестация по лекциям — экзамен Весовой коэффициент значимости результатов промежуточн		
 - 0.50 2. Практические/семинарские занятия: коэффициент значим результатов практических/семинарских занятий – 0.20 	ости совокупі	ных
Текущая аттестация на практических/семинарских занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
выполнение заданий на практических занятиях	2,16	100
Весовой коэффициент значимости результатов текущей атте	стации по	
практическим/семинарским занятиям— 1.00		
Промежуточная аттестация по практическим/семинарским з Весовой коэффициент значимости результатов промежуточн практическим/семинарским занятиям— не предусмотрено	ой аттестации	
3. Лабораторные занятия: коэффициент значимости совокуп лабораторных занятий —не предусмотрено	ных результа	гов
Текущая аттестация на лабораторных занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
Весовой коэффициент значимости результатов текущей атте занятиям -не предусмотрено	стации по лаб	ораторным
Промежуточная аттестация по лабораторным занятиям – нет Весовой коэффициент значимости результатов промежуточн лабораторным занятиям – не предусмотрено 4. Онлайн-занятия: коэффициент значимости совокупных ре – не предусмотрено	ой аттестации	
Текущая аттестация на онлайн-занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах

Весовой коэффициент значимости результатов текущей аттестации по онлайнзанятиям -не предусмотрено

Промежуточная аттестация по онлайн-занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по онлайнзанятиям – не предусмотрено

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

3.2. процедуры текущей и промежуточной аттестации курсовой работы/проскта					
Текущая аттестация выполнения курсовой	Сроки – семестр,	Максимальная			
работы/проекта	учебная неделя	оценка в баллах			
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не					
предусмотрено					
Весовой коэффициент промежуточной аттестации выполнения курсовой					
работы/проекта— защиты — не предусмотрено					

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4 Критерии оценивания учебных достижений обучающихся

Результаты	Критерии оценивания учебных достижений, обучающихся на		
обучения	соответствие результатам обучения/индикаторам		
Знания	Студент демонстрирует знания и понимание в области изучения на		
	уровне указанных индикаторов и необходимые для продолжения		
	обучения и/или выполнения трудовых функций и действий,		
	связанных с профессиональной деятельностью.		
Умения	Студент может применять свои знания и понимание в контекстах,		
	представленных в оценочных заданиях, демонстрирует освоение		
	умений на уровне указанных индикаторов и необходимых для		
	продолжения обучения и/или выполнения трудовых функций и		
	действий, связанных с профессиональной деятельностью.		
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне		
	указанных индикаторов.		
Другие результаты	Студент демонстрирует ответственность в освоении результатов		
	обучения на уровне запланированных индикаторов.		
	Студент способен выносить суждения, делать оценки и		
	формулировать выводы в области изучения.		
	Студент может сообщать преподавателю и коллегам своего уровня		
	собственное понимание и умения в области изучения.		

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)				
№	Содержание уровня	Шкала оценивания			
п/п	выполнения критерия	Традиционная		Качественная	
	оценивания результатов	характеристика	характеристика уровня		
	обучения			ка уровня	
	(выполненное оценочное				
	задание)				
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)	
	(индикаторы) достигнуты в	(80-100 баллов)			
	полном объеме, замечаний нет				
2.	Результаты обучения	Хорошо		Средний (С)	
	(индикаторы) в целом	(60-79 баллов)			
	достигнуты, имеются замечания,				
	которые не требуют				
	обязательного устранения				
3.	Результаты обучения	Удовлетворительно		Пороговый (П)	
	(индикаторы) достигнуты не в	(40-59 баллов)			
	полной мере, есть замечания				
4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный	
	не соответствует индикаторам,	НО	зачтено	(H)	
	имеются существенные ошибки и	(менее 40 баллов)			
	замечания, требуется доработка	,			
5.	Результат обучения не достигнут,	Недостаточно свидетельств		Нет результата	
	задание не выполнено	для оценивания			

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекции

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Практические/семинарские занятия

Примерный перечень тем

- 1. Классификация полупроводников. Технологии выращивания полупроводниковых материалов и гетероструктур.
- 2. Решение задачи о нахождении энергетического спектра одномерной периодической решетки. Анализ спектра в модели Латтинжера. Исследование влияния одноосного и всестороннего сжатия на спектр носителей.
- 3. Спектр и волновые функции мелких донорных и акцепторных состояний. Спектр слабо- и сильнолегированных полупроводников.

- 4. Статистика полупроводников. Решение уравнения электронейтральности в полупроводнике с одним типом однозарядных доноров. Температурная зависимость концентрации электронов в полупроводнике с одним типом однозарядных доноров. Решение уравнения электронейтральности и температурная зависимость концентрации электронов при одновременном наличии донорной и акцепторной примеси.
- 5. Анализ эффект Холла при наличии одного и двух типов носителей заряда в полупроводнике.
- 6. Расчет температурных зависимостей подвижности носителей заряда при различных механизмах рассеяния.
- 7. Определение концентрации и эффективной массы из осцилляций Шубникова-де Газа. Определение эффективной массы из МФР.

Примерные задания

- 1. Основные свойства полупроводников. Основные открытия и достижения в науке и технологии, которые сыграли решающую роль в достижении современного состояния физики полупроводников, как фундаментальной науки. Методы получения полупроводниковых материалов. Методы легирования. Рост самоорганизующихся квантовых точек. Методы получения тонких слоев.
- 2. Найти энергию ионизации мелких донорных состяний в GaAs. Найти энергию ионизации акцепторных состояний в GaAs, InSb, учитывая вырожденный характер валентной зоны. Найти энергию ионизации акцептора в бесщелевом полупроводнике HgTe, обсудить необычность ситуации и возможные последствия с точки зрения поведения электропроводности и эффекта Холла при изменении температуры. Оценить концентрацию перехода Мотта для электронов и дырок в арсениде галлия.
- 3. Построить функцию Ферми-Дирака при различных температурах. Вывести формулы и построить зависимость плотности состояний от энергии для параболического и кейновского законов дисперсии. Построить зависимость заселенности электронных состояний для вырожденного и невырожденного распределения электронов. Написать программу для расчета интегралов Ферми. Оценить погрешность, возникающую при использовании приближенных формул из учебника по физике полупроводников в области промежуточного вырождения электронного газа. Решить уравнение электронейтральности для собственного арсенида галлия и построить температурную зависимость уровня Ферми и концентрации электронов (дырок). Построить примерный ход уровня Ферми в применсом полупроводнике при наличии и отсутствии компенсирующей примеси. Обсудить получившееся отличие. Построить качественную температурную зависимость электронов в примесном полупроводнике при разной степени копменсации. Обсудить характерные особенности. Построить качественный ход температурной зависимости концентрации электронов и дырок в полупроводниках n- и pтипов в широкой области температур. Построить температурную зависимость концентрации электронов и дырок в бесщелевом полупроводнике HgTe. Обсудить различие с полупроводниками с открытой щелью.
- 4. По имеющимся величинам подвижности и концентрации электронов найти удельное сопротивление материала. Зная геометрию образца и его параметры, найти падение напряжения возникающее на нем при пропускании электрического тока определенной силы. Объяснить физический смысл понятия подвижность. Объяснить разницу между понятиями транспортное время релаксации импульса и время релаксации импульса. Показать, что электропроводность германия и кремния является скалярной величиной, несмотря на то, что минимумы зоны проводимости в этих материалах являются анизотропными. Объяснить

эффект Холла. Уметь найти эдс Холла в материале с заданными параметрами, если задана геометрия эксперимента и его условия (магнитное поле и сила тока, протекающего через образец). Объяснить смену знака эффекта Холла при изменении температуры в узкозонных полупроводниках р-типа. Объяснить отсутствие такой смены в полупроводниках п-типа. Построить температурную зависимость коэффициента Холла (в малых магнитных полях) и проводимости в конкретных материала с заданным уровнем легирования, используя знания энергетического спектра.

- 5. Построить зависимость тензоров сопротивления и проводимости от магнитного поля в случае вырожденного полупроводника. Объяснить явление магнитосопротивления в невырожденном электронном газе. Объяснить возникновение зависимости от магнитного поля сопротивления и коэффициента Холла в вырожденном полупроводнике с двумя (или более) типами носителей заряда. Построить температурную зависимость подвижности электронов в арсениде галлия с заданной концентрацией ионизованной примеси. Сравнить расчет с экспериментальными данными. Объяснить имеющееся различие (или совпадение). Найти по заданной величине подвижности время транспортное время релаксации. Зная величину коэффициента Холла и удельное сопротивление образца заданного материала, найти концентрацию носителей, подвижность и время релаксации импульса.
- 6. Построить уровни Ландау для электронов и дырок в арсениде галлия (легкие и тяжелые дырки считать невзаимодействующими). Построить зависимость ширины запрещенной зоны в HgCdTe от магнитного поля. Объяснить особенности плотности состояний в магнитном поле. К каким особенностям в спектре электрона в магнитном поле приводит учет спина. Объяснить природу возникновения осцилляций Шубникова-де Газа. Объяснить, почему не осциллирует коэффициент Холла. Условия наблюдения осцилляций Шубникова-де Газа. Определить по экспериментальным осцилляционным кривым концентрацию электронов и их эффективной массы. Объяснить природу магнитофононного резонанса (МФР). Как определяется эффективная масса в экспериментах по МФР. Построить зависимость концентрации электронов от магнитного поля в области примесной и собственной проводимости.

7. Формулировка общей квантово-механической задачи о спектре твердого тела. Основные приближения, позволяющие значительно упростить многочастичный гамильтониан. Эффекты, которые были потеряны при адиабатическом и одноэлектронном приближениях. Рассчитать спектр квантовой частицы в одномерном потенциальном ящике. Сделать оценки расстояния между энергетическими уровнями при разной степени заполнения ящика. Доказать теорему Блоха. Свести одномерное уравнение Шредингера к уравнению для блоховских множителей. Найти спектр первых трех зон в одномерном кристалле, найти эффективные массы закона дисперсия вблизи экстремум зон. Построить зависимость эффективной массы от энергии в $Hg_{1-x}Cd_xTe$ с содержанием кадмия 20%. Используя табличные параметры спектра, найти эффективные массы плотности состояний для электронов в Ge и Si. Построить изоэнергетические поверхности для легких и тяжелых дырок в валентной зоне Si, Ge и GaAs. Проследить эволюцию спектра валентной зоны при приложении одноосного давления вдоль главных кристаллографических направлений.

LMS-платформа – не предусмотрена

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

Разноуровневое (дифференцированное) обучение.

Базовый

5.2.1. Контрольная работа № 1

Примерный перечень тем

1. Спектр свободных и локализованных состояний.

Примерные задания

- 1. Найти энергию ионизации доноров в некомпенсированном примесном полупроводнике, если при увеличении температуры с 5 K до 20 K концентрация электронов увеличилась от 1×10^{14} см⁻³ до 2×10^{16} см⁻³.
- 2. Линия циклотронного резонанса на частоте 2.61 THz наблюдается в поле 1.8 Тл. Определить циклотронную эффективную массу.
- 3. Оценить энергию ионизации мелких донорных состояний в InSb и InAs.
- 4. Оценить энергию ионизации акцепторных состояний в <u>InSb</u>, <u>учитывая сложный</u> (наличие легких и тяжелых дырок) характер валентной зоны.
- 5. В исследуемом полупроводнике концентрация собственных электронов составляла 1.3×10^{16} см⁻³ при T=400 K и 6.2×10^{15} см⁻³ при T=350 K. Найти ширину запрещенной зоны.

LMS-платформа – не предусмотрена

5.2.2. Контрольная работа № 2

Примерный перечень тем

- 1. Статистика полупроводников.
- 2. Явления переноса.

Примерные задания

- 1. Найти энергию Ферми в арсениде галлия при T=4.2 K, если известно, что концентрация электронов равна $1 \cdot 10^{17}$ см⁻³. Ответить на вопрос: является электронный газ при этом вырожденным или он невырожденный?
- Найти собственные концентрации электронов и дырок в антимониде индия при Т=300 К. Наличием легких дырок в валентной зоне пренебречь.
- Используя табличные параметры спектра, найти эффективную массу плотности состояний для электронов в Ge.
- 4. Найти условия, при которых в полупроводнике с концентрацией электронов $n=2\cdot 10^{15}$ см⁻³ и концентрацией дырок $p=2\cdot 10^{16}$ см⁻³ коэффициент Холла в нулевом магнитном поле равен нулю.
- 5. Найти величину коэффициента Холла в сильном магнитном поле ($\mathbf{B} \rightarrow \infty$) в полупроводнике p-типа, если известны концентрации легких и тяжелых дырок $p_1=2\cdot 10^{15}$ см⁻³ и $p_2=2\cdot 10^{16}$ см⁻³, соответственно.
- 6. Вдоль длинной стороны прямоугольной пластинки полупроводника с концентрацией электронов 1.5×10¹⁵ см⁻³ пропускается ток силой 1 мА. Чему равна ЭДС Холла в магнитном поле 2.5 Тл? Размеры пластинки: длина 5 мм, ширина 1 мм, толщина 100 мкм?
- Найти время релаксации импульса электронов в арсениде галлия, проводимость которого равна 2 (Ом×см)-1, коэффициент Холла, измеренный на этом кусочке равен R_H=-1000 см³/Кл

LMS-платформа – не предусмотрена

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Экзамен

Список примерных вопросов

- 1. Модель Латтинжера. Легкие и тяжелые дырки.
- 2. Простейшие модели спектра: одномерный ящик и модель Блоха. Предсказания моделей и их соответствие реальной ситуации.
- 3. Зависимость энергии Ферми от температуры в полупроводнике п-типа. Рассмотреть случаи нулевой и ненулевой компенсации.
- 4. Магнитофононный резонанс (МФР). Определение эффективной массы их экспериментаов по МФР.
- 5. Решение уравнения электронейтральности и температурная зависимость концентрации электронов в полупроводнике с одним типом однозарядных доноров.
- 6. Эффект Холла (один тип носителей, двигающихся с одинаковой скоростью, малые магнитные поля). Угол Холла. Характер движения электронов и дырок в скрещенных электрических и магнитных полях.
- 7. Ранние исследования и основные свойства полупроводников. Применение полупроводников.
- 8. Распределение Ферми-Дирака. Уровень Ферми. Вырожденный и невырожденный электронный газ.

- 9. Характер движения электрона в периодическом потенциале при наличии внешнего электрического поля. Понятие групповой скорости. Эффективная масса.
- 10. Решение уравнения электронейтральности и температурная зависимость концентрации электронов при одновременном наличии донорной и акцепторной примеси. Считать ND>NA.
- 11. Тензор электропроводности, эффект Холла и магнитосопротивление в произвольном магнитном поле. Рассмотреть случаи вырожденного и невырожденного распределения носителей заряда, сильные и слабые магнитные поля.
- 12. Зонная структура полупроводников со структурой цинковой обманки. Бесщелевые и узкощелевые полупроводники. Спектр твердых растворов теллурида кадмия-ртути при различной концентрации ртути.
- 13. Магнитосопротивление для вырожденного и невырожденного полупроводника. Коэффициент магнитосопротивления, его зависимость от механизма рассеяния.
- 14. Зависимость времени релаксации импульса от энергии для различных механизмов рассеяния. Температурная зависимость подвижности.
- 15. Типы зонной структуры в кристаллических веществах. Зонная структура германия и кремния.
- 16. Эффект Холла и магнитосопротивление и их зависимости от магнитного поля для двух типов носителей заряда электронов и дырок.
- 17. Энергетиеский спектр электронов и дырок в магнитном поле. Плотность состояний. Модификация спектра и плотности состояний при учете спина.
- 18. Элементы зонной теории. Формулировка общей квантово-механической задачи о нахождении электронного спектра. Адиабатическое приближение и его применимость. Одноэлектронное приближение.
- 19. Решение уравнения электронейтральности для собственного полупроводника. Температурная зависимость концентрации носителей заряда и уровня Ферми в собственном полупроводнике.
- 20. Зависимость ширины запрещенной зоны от магнитного поля. Обсудить возможные следствия с точки зрения измеряемых физических величин.
 - 21. Классификация полупроводников. Методы выращивания полупроводников.
- 22. Электропроводность. Подвижность. Транспортное время релаксации импульса. Закон Ома в анизотропных полупроводниках.
 - 23. Уравнение Больцмана. Правило усреднения времени релаксации импульса.
- 24. Эффект Холла для невырожденного и вырожденного электронного газа. Холлфактор.
 - 25. Межзонное и примесное магнитное вымораживание носителей.
- 26. Время релаксации и вероятность квантовых переходов. Рассеяние на ионизованной примеси. Температурная зависимость подвижности при рассеянии на ионизованной примеси.
- 27. Плотность состояний в изотропной и анизотропной зоне. Эффективная масса плотности состояний. Концентрация носителей заряда в зонах и на локальных уровнях. Интегралы Ферми.
- 28. Зонный характер спектра в модели Блоха. Волновая функция электрона в периодическом потенциале. Форма краев зон.
 - 29. Модель Кейна.

- 30. Решение уравнения электронейтральности и температурная зависимость концентрации электронов в полупроводнике с одним типом однозарядных доноров.
- 31. Энергетический спектр реальных полупроводников. Классификация дефектов. Мелкие примесные уровни. Спектр и волновые функции мелких донорных и акцепторных состояний.

LMS-платформа – не предусмотрена

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.