ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Теплофизика

Код модуля 1149915

Модуль

Прикладные аспекты математических знаний

Екатеринбург

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Гольцев Владимир	кандидат	Доцент	теплофизики и
	Арисович	технических		информатики в
		наук, доцент		металлургии

Согласовано:

Управление образовательных программ

Ю.В. Коновалова

Авторы:

• Гольцев Владимир Арисович, Доцент, теплофизики и информатики в металлургии

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Теплофизика

1.	Объем дисциплины в	5	
	зачетных единицах		
2.	Виды аудиторных занятий	Лекции	
		Лабораторные занятия	
3.	Промежуточная аттестация	Зачет	
		Экзамен	
4.	Текущая аттестация	Контрольная работа	2
		Домашняя работа	1

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Теплофизика

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

Код и наименование компетенции	Планируемые результаты обучения (индикаторы)	Контрольно-оценочные средства для оценивания достижения результата обучения по дисциплине
1	2	3
ОПК-1 -Способен	Д-1 - Демонстрировать умение	Домашняя работа
формулировать и	эффективно работать в команде	Зачет
решать задачи,	3-1 - Привести примеры	Контрольная работа № 1
относящиеся к	основных закономерностей	Контрольная работа № 2
профессиональной	развития природы, человека и	Лабораторные занятия
деятельности,	общества	Лекции
применяя	3-2 - Обосновать значимость	Экзамен
фундаментальные	использования	
знания основных	фундаментальных	
закономерностей	естественнонаучных и	
развития природы,	философских знаний в	
человека и общества	формулировании и решении	
	задач профессиональной	
	деятельности знаний	
	П-1 - Работая в команде,	
	формулировать и решать задачи	
	в рамках поставленного	
	задания, относящиеся к области	

профессиональной	
деятельности	
У-1 - Использовать понятийный	
аппарат и терминологию	
основных закономерностей	
развития природы, человека и	
общества при формулировании	
и решении задач	
профессиональной	
деятельности	
У-2 - Определять конкретные	
пути решения задач	
профессиональной	
деятельности на основе	
фундаментальных	
естественнонаучных знаний	

3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

- 0.6		нных занятий
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
домашняя работа	3,7	50
	3,	
контрольная работа	3,8	50
Весовой коэффициент значимости результатов текущей ат	тестации по лег	кциям – 0.5
- 0.5 2. Практические/семинарские занятия: коэффициент значрезультатов практических/семинарских занятий – не пред		ных
•	<u> </u>	
Текущая аттестация на практических/семинарских	Сроки –	Максималь
занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах

3. Лабораторные занятия: коэффициент значимости сог	ΕΛΕΥΠΊΙΙ ΝΑΣΥΠΙΤ	TAD
лабораторных занятий –0.4	вокуппых результа	ПОВ
Текущая аттестация на лабораторных занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
отчет по лабораторным работам	3,15	100
Весовой коэффициент значимости результатов текущей занятиям -1	й аттестации по ла	бораторным
Весовой коэффициент значимости результатов промеж лабораторным занятиям — не предусмотрено 4. Онлайн-занятия: коэффициент значимости совокупн —		
Текущая аттестация на онлайн-занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
Весовой коэффициент значимости результатов текущей занятиям -	й аттестации по он.	пайн-
Janatham -		

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

3.2. процедуры текущей и промежуточной аттестации курсовой работы/проекта					
Текущая аттестация выполнения курсовой Сроки – семестр, Максималь					
работы/проекта	учебная неделя	оценка в баллах			
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не					
предусмотрено					
Весовой коэффициент промежуточной аттестации выполнения курсовой					
работы/проекта— защиты — не предусмотрено					

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

2. Лекции: коэффициент значимости совокупных резул- — 0.5 Текущая аттестация на лекциях	льтатов лекцио Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
контрольная работа	4,6	100
Весовой коэффициент значимости результатов текущей ат	тестации по леі	кциям – 0.5
Промежуточная аттестация по лекциям – зачет Весовой коэффициент значимости результатов промежуто – 0.5	·	·
2. Практические/семинарские занятия: коэффициент значи	•	ных
2. Практические/семинарские занятия: коэффициент значрезультатов практических/семинарских занятий – не пред	•	ных
•	•	НЫХ Максималь
результатов практических/семинарских занятий – не пред	усмотрено	

	T	1	
	учебная		
	неделя		
Весовой коэффициент значимости результатов текущей атте	стации по		
практическим/семинарским занятиям— не предусмотрено			
Промежуточная аттестация по практическим/семинарским з			
Весовой коэффициент значимости результатов промежуточн	ой аттестации	I ПО	
практическим/семинарским занятиям- не предусмотрено			
3. Лабораторные занятия: коэффициент значимости совокуп лабораторных занятий -0.5	ных результа	гов	
Текущая аттестация на лабораторных занятиях	Сроки –	Максималь	
	семестр,	ная оценка	
	учебная	в баллах	
	неделя		
отчет по лабораторным работам	4,16	100	
Весовой коэффициент значимости результатов текущей аттестации по лабораторным			
занятиям -1			
Промежуточная аттестация по лабораторным занятиям –нет			
Весовой коэффициент значимости результатов промежуточн	ой аттестации	I ПО	
лабораторным занятиям – не предусмотрено			
4. Онлайн-занятия: коэффициент значимости совокупных ре	зультатов онд	іайн-занятий	
Текущая аттестация на онлайн-занятиях	Сроки –	Максималь	
	семестр,	ная оценка	
	учебная	в баллах	
	неделя		
Весовой коэффициент значимости результатов текущей атте	стации по онл	айн-	
Занятиям -			
Промежуточная аттестация по онлайн-занятиям — Весовой коэффициент значимости результатов промежуточн	OH OTTOGTOR	т по опрежи	
	ои агтестации	і по онлаин-	
занятиям —			

3.2. Процедуры текушей и промежуточной аттестации курсовой работы/проекта

5.2. процедуры текущей и промежуточной аттестации курсовой раооты/проекта					
Текущая аттестация выполнения курсовой	Сроки - семестр,	Максимальная			
работы/проекта	учебная неделя	оценка в баллах			
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не					
предусмотрено					
Весовой коэффициент промежуточной аттестации выполнения курсовой					
работы/проекта— защиты — не предусмотрено					

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4

Результаты Критерии оценивания учебных достижений, обучающихся		
обучения	соответствие результатам обучения/индикаторам	
Знания	Студент демонстрирует знания и понимание в области изучения на	
	уровне указанных индикаторов и необходимые для продолжения	
	обучения и/или выполнения трудовых функций и действий,	
	связанных с профессиональной деятельностью.	
Умения	Студент может применять свои знания и понимание в контекстах,	
	представленных в оценочных заданиях, демонстрирует освоение	
	умений на уровне указанных индикаторов и необходимых для	
	продолжения обучения и/или выполнения трудовых функций и	
	действий, связанных с профессиональной деятельностью.	
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне	
указанных индикаторов.		
Другие результаты	Студент демонстрирует ответственность в освоении результатов	
	обучения на уровне запланированных индикаторов.	
	Студент способен выносить суждения, делать оценки и	
	формулировать выводы в области изучения.	
	Студент может сообщать преподавателю и коллегам своего уровня	
	собственное понимание и умения в области изучения.	

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Таблица 5 Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)				
No	Содержание уровня Шкала оцениван			ия	
п/п	выполнения критерия	Традиционная		Качественная	
	оценивания результатов	характеристика уровня		характеристи	
	обучения			ка уровня	
	(выполненное оценочное				
	задание)		ı		
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)	
	(индикаторы) достигнуты в	(80-100 баллов)			
	полном объеме, замечаний нет				
2.	Результаты обучения	Хорошо		Средний (С)	
	(индикаторы) в целом	(60-79 баллов)			
	достигнуты, имеются замечания,				
	которые не требуют				
	обязательного устранения				
3.	Результаты обучения	Удовлетворительно		Пороговый (П)	
	(индикаторы) достигнуты не в	(40-59 баллов)			
	полной мере, есть замечания				
4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный	
	не соответствует индикаторам,	НО	зачтено	(H)	
	имеются существенные ошибки и	(менее 40 баллов)			
	замечания, требуется доработка				

5.	Результат обучения не достигнут,	Недостаточно свидетельств	Нет результата
	задание не выполнено	для оценивания	

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекции

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Лабораторные занятия

Примерный перечень тем

- 1. Исследование теплообмена излучением
- 2. Определение коэффициента теплопроводности твердых материалов
- 3. Изучение процесса теплопроводности при нестационарном режиме
- 4. Исследование естественной конвекции в условиях комбинированного теплообмена труб с окружающим воздухом
 - 5. Исследование фазовых переходов
 - 6. Определение универсальной газовой постоянной
 - 7. Исследование движения газовой среды в трубах переменного сечения
 - 8. Определение коэффициентов местных сопротивлений
 - LMS-платформа
 - 1. https://elearn.urfu.ru/course/view.php?id=6240

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

Разноуровневое (дифференцированное) обучение.

Базовый

5.2.1. Контрольная работа № 1

Примерный перечень тем

- 1. Общая классификация топлив
- 2. Характеристика твердого топлива
- 3. Характеристика жидкого топлива
- 4. Характеристика газообразного топлива
- 5. Низшая теплота сгорания топлива
- 6. Высшая теплота сгорания топлива

Примерные задания

Общая классификация топлив. Рассмотреть элементарный состав твердого и жидкого топлива

По происхождению топливо подразделяется на естественное и искусственное. Топливо в естественном виде не всегда удовлетворяет требованиям, предъявляемым к нему. Поэтому его подвергают переработке, целью которой является улучшение свойств топлива или изменение его агрегатного состояния. Полученное в результате переработки топливо называют искусственным.

По агрегатному состоянию топливо подразделяется на т в ё р д о е, ж и д к о е и г а з о о б р а з н о е.

Качество топлива определяется его химическим составом, теплотой сгорания, отношением к нагреванию.

Для установления состава топлива проводят технический и химический анализы топлива.

Техническим анализом определяют содержание влаги, летучих веществ, золы в составе топлива, свойства коксового остатка и величину теплоты сгорания.

Химический анализ позволяет определить, какие вещества и в каком количестве присутствуют в топливе. Твердые и жидкие топлива представляют собой сложные соединения горючих элементов, молекулярное строение которых еще недостаточно изучено, и включают в себя минеральные примеси и влагу. Ввиду специфики химического анализа твердого и жидкого топлива анализ даст их состав в виде элементов, входящих в эти виды топлива. Элементарный химический анализ этих топлив не раскрывает химической природы входящих в них соединений и поэтому не может дать достаточно полного представления об их свойствах, но позволяет производить расчеты горения топлива.

Состав газообразного топлива представляют в виде соединений, образующих это топливо.

Для определения состава топлива применяются газоанализаторы и хроматографы. Рассмотрим состав топлива.

Любой вид органического топлива включает в себя компоненты, характеристики которых будут рассмотрены ниже.

Углерод (C) - основная горючая составляющая топлива — может находиться как в свободном состоянии, так и в виде соединений (CO, CO2, Cm Hп и др.). Содержание его колеблется от 50 % (в древесине) до 95 % (в антраците), в жидком топливе - до 85 -90 %.

Водород (Н) является вторым по значению горючим элементом топлива. Содержится в свободном состоянии или в виде соединений с кислородом, серой, углеродом. Связанный с кислородом, он не участвует в горении и яв-ляется балластом топлива. Его содержание в горючей массе твердых и жидких топлив колеблется от 1 до 15 %, в природном газе - десятки процентов. Хотя содержание водорода в топливах относительно невелико, но, благодаря большому количеству энергии, выделяющейся при его окислении, вклад водорода в создание необходимых температур в печи может быть значительным. Следует отметить, что в экологическом плане это наиболее безопасный компонент топлива.

Кислород (O) и азот (N) в топливе являются балластом, так как их наличие уменьшает содержание горючих элементов в топливе. Кроме того, кислород, находясь в соединении с водородом или углеродом топлива, выводит их из процесса горения и уменьшает теплоту сгорания топлива. Содержание кислорода велико в древесине и торфе (до 44 %), в жидком топливе - около 1, 5 %.

Азот при сжигании топлива в атмосфере воздуха не окисляется и пере-ходит в продукты сгорания в свободном виде. Его содержание колеблется от 0, 5-1, 0 % в твердом топливе, до 60 % - в газообразном.

Следует отметить, что в особых случаях азот топлива может быть источником экологически опасных соединений в продуктах горения.

Сера (S) может содержаться в твердом топливе в трех видах: 1) в виде сложных высокомолекулярных органических соединений с углеродом, водо-родом и кислородом (So); 2) в виде соединений с железом и медью (FeS2 - железный колчедан, CuS - медный колчедан), это так называемая колчеданная сера (Sk); 3) в виде сульфатных соединений - сульфатная сера (SC):

$$Soбim = So + Sk + Sc$$

Органическая и колчеданная сера при горении топлива окисляется с выделением тепла, поэтому является горючей, и в составе твердого и жидкого топлива обозначается буквой S, Сульфатная сера входит в минеральную часть топлива в виде сульфатов CaSO4, FeSO4 и др., поэтому в процессе горения дальнейшему окислению не подвергается. Сульфатные соединения серы при горении переходят в золу.

Содержание серы в твердых топливах обычно невелико. В нефти сера входит в состав неорганических соединений, в природных газах она практически отсутствует, в попутных газах некоторых нефтяных месторождений содержится немного серы в виде сероводорода H2S и сернистого газа SO2. Образующийся при горении топлива сернистый газ и особенно сопутствующий ему в небольшом количестве серный газ SO3 вызывают коррозию металлических частей конструкций и отравляют окружающую местность. Поэтому сера является вредной и нежелательной примесью топлива.

Зола (A) - твердый негорючий остаток, получающийся после завершения преобразований в минеральной части топлива в процессе его горения и представляющий собой смесь негорючих минеральных соединений. Основными минеральными примесями топлива являются силикаты (кремнезем SiO2, глинозем Al2O3, глина), сульфиды (преимущественно FeS2), карбонаты (CaCO3, MgCO3, FeCO3), сульфаты (CaSO4, MgSO4), закиси и окиси металлов, фосфаты, хлориды, соли щелочных металлов.

Выход газифицирующейся части примесей уменьшает массу золы по отношению к исходным минеральным примесям топлива, а некоторые реакции, например, окисление железного колчедана, приводят к его увеличению. Обычно масса золы немного меньше массы минеральных примесей в топливе.

Значительное количество золы (до 40-60 %) находится в твердом топливе, доли процента - в жидком, в газообразном - следы.

Важно не только количественное содержание золы, но и ее качество. В печах из негорючих минеральных соединений могут формироваться низко-температурные эвтектические смеси, поэтому при выборе твердого топлива необходимо считаться с такой важной характеристикой топлива, как плавкость золы.

Влага (W) является балластом топлива. Принято разделять влагу на внешнюю и внутреннюю.

При добыче, транспортировке и хранении топлива в него попадают подземные и грунтовые воды, влага из атмосферного воздуха, вызывая поверхностное увлажнение кусков топлива. К внешней также относится капиллярная влага, т. е. влага, заполняющая капилляры и поры. Внешняя влага может быть удалена механическими средствами и тепловой сушкой.

LMS-платформа

1. https://elearn.urfu.ru/mod/folder/view.php?id=146652

5.2.2. Контрольная работа № 2

Примерный перечень тем

- 1. Кинематика газов и жидкостей
- 2. Понятие о линии тока и трубке тока. Свойства трубки тока для стационарного движения
 - 3. Уравнение неразрывности потока и его анализ
 - 4. Уравнение изменения давлений в движущемся потоке (уравнение Бернулли)
- 5. Динамика реальной среды. Режимы движения реальной среды. Число Рейнольдса и его физический смысл
 - 6. Потери давления на трение и на местных сопротивлениях

Примерные задания

Сформулировать основные понятия механики жидкостей и газов.

Изучает условия равновесия и закономерности движения текучих сред – жидкостей и газов.

Допущения:

Текучие среды представляем как сплошную (дискретным, молекулярным строением пренебрегаем). Следствием полагаем рассмотрение свойств в элементарном объеме dV как в макроскопическом объеме.

Плотность жидкости (газа).

Если плотность постоянна, среда называется несжимаемой.

Если плотность переменна, то и среда сжимаема.

Идеальная среда лишена свойства вязкости (внутреннего трения). Реальная среда обладает свойствами вязкости (внутреннего трения).

LMS-платформа

1. https://elearn.urfu.ru/mod/folder/view.php?id=150416

5.2.3. Домашняя работа

Примерный перечень тем

- 1. Расчет потерь теплоты через стенку металлургического агрегата
- 2. Отопление производственного помещения (излучение и конвекция)
- 3. Задача на поперечное обтекание пучка труб
- 4. Вынужденная конвекция в газах
- 5. Сложный теплообмен в газах

Примерные задания

Стенка теплотехнического агрегата состоит из огнеупорного материала толщиной дельта, м, коэффициент теплопроводности которого известен (лямбда, Вт/(м2К)) и зависит от температуры. Температура газов (продуктов горения), омывающих внутреннюю поверхность стенки, составляет t1, 0С. Температура воздуха, охлаждающего наружную поверхность стенки, равна t3, 0С. Коэффициент теплоотдачи от газов к внутренней

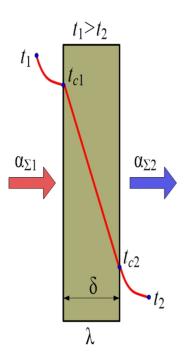
поверхности стенки составляет альфа1, Вт/(м2К). Площадь стенки F, м2. Излучательная способность (степень черноты) наружной поверхности стенки є, доли ед. Условия теплопередачи стационарные.

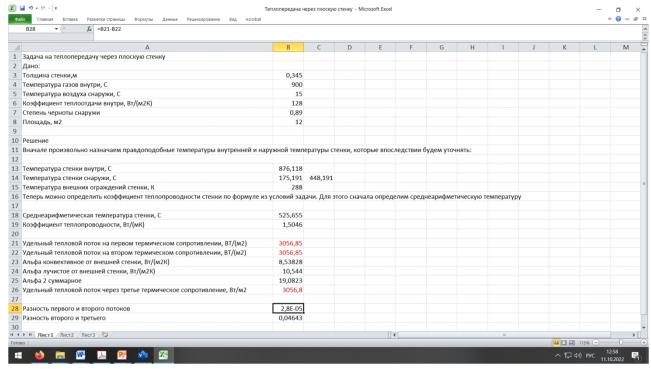
Необходимо определить:

- 1. Температуры внутренней и наружной поверхности стенки t1 и t2.
- 2. Суммарный коэффициент теплоотдачи от наружной стенки к воздуху альфа2, $B_{T}/(M2K)$.
- 3. Коэффициент теплопередачи K, Bт/(м2K); плотность теплового потока q, Bт/м2 и количество тепла Q, МДж, теряемое через стенку за час.

Как изменятся искомые показатели, если поверхность будет ориентирована горизонтально (свод печи).

Постановка задачи по расчету теплопередачи между двумя средами через плоскую стенку




Схема теплопередачи через плоскую однородную стенку:

 t_1, t_2 – температура сред 1 и 2;

 t_{c1}, t_{c2} — температура внутренней и наружной поверхности стенки;

 $\alpha_{\Sigma 1}$ — суммарный коэффициент теплоотдачи от среды 1 к внутренней поверхности стенки, Вт/(м²·К); $\alpha_{\Sigma 2}$ — суммарный коэффициент теплоотдачи от наружной поверхности стенки к среде 2, Вт/(м²·К); δ — толщина стенки, м;

 λ – коэффициент теплопроводности материала стенки, Вт/(м·К).

LMS-платформа

1. https://elearn.urfu.ru/mod/assign/view.php?id=146660

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Зачет

Список примерных вопросов

- 1. Понятия температурного поля, изотермы, теплового потока
- 2. Уравнение Фурье для стационарных тепловых условий
- 3. Перенос теплоты теплопроводностью через плоскую стенку при стационарном режиме
- 4. Коэффициент теплопроводности и его физический смысл. Зависимость коэффициента теплопроводности от температуры
- 5. Перенос теплоты теплопроводностью через цилиндрическую стенку при стационарном режиме
- 6. Перенос теплоты конвекцией (конвективный теплообмен). Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи
- 7. Перенос теплоты конвекцией (конвективный теплообмен). Свободная и вынужденная конвекция
- 8. Анализ размерностей и основы теории подобия для описания конвективного теплообмена. Физический смысл чисел Нуссельта, Прандтля и Грасгофа.
- 9. Тепловой пограничный слой. Особенности конвективного теплообмена при обтекании пластины потоком
- 10. Основные законы излучения для абсолютно черного тела. Понятия об интегральном и спектральном излучении.
- 11. Особенности передачи тепла излучением. Понятие об абсолютно черном, абсолютно белом и абсолютно прозрачном (диатермичном) теле.
 - 12. Особенности теплового излучения газов.

- 13. Излучение серых тел. Степень черноты и поглощательная способность серого тела.
- 14. Теплопередача между двумя средами через разделяющую их стенку при стационарном режиме. Коэффициент теплопередачи
- 15. Теплопроводность при нестационарном тепловом режиме. Нагрев и охлаждение тел при граничных условиях третьего рода.

LMS-платформа

1. https://elearn.urfu.ru/course/view.php?id=6240

5.3.2. Экзамен

Список примерных вопросов

- 1. Изложите содержание I постулата МЖГ (о сплошности). Как используется постулат о сплошности в механике жидкостей и газов
- 2. В чем заключается свойство текучести. Изложите содержание постулата МЖГ (о текучести). Как используется постулат о текучести в механике жидкостей и газов?
- 3. В чем отличие жидкости от газа и какие среды в механике жидкостей и газов называются жидкостью? В каких случаях газ может считаться жидкостью в механике жидкостей и газов?
- 4. Какой физический параметр является характеристикой сжимаемости сплошной среды? Какая сплошная среда называется идеальной жидкостью? В каких случаях при описании движения сплошной среды используется модель идеальной жидкости?
- 5. В каких случаях при описании процессов, протекающих в жидкостях и газах не применима модель идеальной жидкости?
- 6. Как формулируется понятие скорости в механике жидкостей и газов? Напишите это выражение словами и в виде формулы. Дайте определение скорости жидкостей и газов, как векторной величины. От каких параметров зависит эта величина? Как выразить расход через скорость? Что такое стационарное и нестационарное движение?
- 7. Дайте определение понятию «плотность потока массы». Запишите выражение закона сохранения массы в общем виде и для несжимаемой жидкости. Расшифруйте слагаемые, входящие в уравнения. Напишите уравнение неразрывности в общем виде. Для какой жидкости: идеальной или реальной, сжимаемой или несжимаемой справедливо это уравнение и почему?
- 8. Что такое давление? Перечислите силы, действующие в реальной движущейся жидкости. Перечислите силы, действующие в идеальной движущейся жидкости.
- 9. В каких случаях в движущейся реальной жидкости возникает сила вязкого трения? В каких случаях в жидкости или газе действует сила давления? В каких случаях в движущейся жидкости возникает сила инерции? Когда в покоящейся жидкости действует сила давления? Запишите систему уравнений, позволяющую решить основную задачу механики жидкостей и газов.
- 10. Каким уравнением выражается закон сохранения количества движения для идеальной жидкости? Напишите это уравнение в векторной форме. Для каких жидкостей: сжимаемой или несжимаемой применимо уравнение Эйлера? Объясните почему. Запишите уравнения статики. Как они выводятся?
- 11. Как соотносятся в покоящейся жидкости внешняя массовая сила и сила давления? Когда в покоящейся жидкости действует сила давления? Когда в покоящейся жидкости не действует сила давления? Докажите, что в покоящейся несжимаемой жидкости, находящейся в поле действия силы тяжести, давление по глубине изменяется линейно.

- 12. Напишите уравнение Бернулли для потока реальной жидкости. Расшифруйте выражение потерь. Что такое коэффициент Кориолиса? Как рассчитываются потери энергии на трение? От чего и как зависит коэффициент сопротивления трения? Что такое гидравлический диаметр канала? Зачем вводится эта величина?
- 13. Дайте характеристику ламинарному и турбулентному режимам течения жидкости. От чего зависит режим движения жидкости? Дайте определение понятию «пограничный слой». Как изменяется толщина пограничного слоя вдоль поверхности трубы?
 - 14. Общая характеристика твердого, жидкого и газообразного топлива в металлургии
 - 15. Низшая и высшая теплота сгорания топлива
 - 16. Методика расчета горения топлива
 - LMS-платформа
 - 1. https://elearn.urfu.ru/course/view.php?id=6240

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направление	Вид	Технология	Компетенц	Результат	Контрольно-
воспитательной	воспитательной	воспитательной	ИЯ	ы	оценочные
деятельности	деятельности	деятельности	HIN	обучения	мероприятия
Профессиональн ое воспитание	учебно- исследовательск ая, научно- исследовательск ая	Технология формирования уверенности и готовности к самостоятельной успешной профессиональн ой деятельности	ОПК-1	Д-1	Домашняя работа Зачет Контрольная работа № 1 Контрольная работа № 2 Лабораторные занятия Лекции Экзамен