ОЦЕНОЧНЫЕ МАТЕРИАЛЫ по дисциплине

Гидравлика

Код модуля 1152690(1)

Модуль

Теоретические основы профессиональной деятельности

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Пастухова Лилия Германовна	кандидат технических наук, без ученого звания	Заведующи й кафедрой	гидравлики

Согласовано:

Управление образовательных программ Е.А. Смирнова

Авторы:

• Пастухова Лилия Германовна, Заведующий кафедрой, гидравлики

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Гидравлика

1.	Объем дисциплины в	4	
	зачетных единицах		
2.	Виды аудиторных занятий	Лекции	
		Практические/семинарские занятия	I
		Лабораторные занятия	
3.	Промежуточная аттестация	Экзамен	
4.	Текущая аттестация	Контрольная работа 2	
		Домашняя работа 2	
		Отчет по лабораторным 5	
		работам	

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Гидравлика

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

Код и наименование компетенции	Планируемые результаты обучения (индикаторы)	Контрольно-оценочные средства для оценивания достижения результата
		обучения по дисциплине
1	2	3
ОПК-3 -Способен	Д-1 - Проявлять умение видеть	Лабораторные занятия
планировать и	детали, упорство,	Отчет по лабораторным
проводить	аналитические умения	работам № 1
комплексные	3-1 - Сформулировать основные	Отчет по лабораторным
исследования и	принципы организации и	работам № 2
изыскания для	планирования научного	Отчет по лабораторным
решения инженерных	исследования	работам № 3
задач относящихся к	3-2 - Характеризовать	Отчет по лабораторным
профессиональной	возможности	работам № 4
деятельности,	исследовательской аппаратуры	Отчет по лабораторным
включая проведение	и методов исследования,	работам № 5
измерений,	используя технические	Экзамен
планирование и	характеристики и области	
постановку	применения	
экспериментов,	3-3 - Сделать обзор основных	
интерпретацию	методов статистической	

полушания ву	oppoporter a stronger	
полученных	обработки и анализа	
результатов	результатов измерений	
	3-4 - Перечислить основные	
	нормативные документы,	
	регламентирующие оформление	
	научно-технических отчетов и	
	защиту прав интеллектуальной	
	собственности	
	П-1 - Выполнять в рамках	
	поставленного задания	
	экспериментальные	
	комплексные научно-	
	технические исследования и	
	изыскания для решения	
	инженерных задач в области	
	профессиональной	
	деятельности, включая	
	обработку, интерпретацию и	
	оформление результатов	
	П-2 - Оформить научно-	
	технический отчет, публикацию	
	научных результатов,	
	документы защиты	
	интеллектуальной	
	собственности в соответствии с	
	нормативными требованиями	
	У-1 - Собирать и анализировать	
	научно-техническую	
	информацию для оптимального	
	планирования исследования и	
	изыскания	
	У-2 - Обоснованно выбрать	
	необходимую аппаратуру и	
	метод исследования для	
	решения инженерных задач,	
	относящихся к	
	профессиональной	
	деятельности	
	У-3 - Оценивать оформление	
	научно-технических отчетов,	
	публикаций научных	
	результатов, документов	
	защиты интеллектуальной	
	собственности на соответствие	
	нормативным требованиям	
	1	
ОПК-7 -Способен	Д-1 - Проявлять настойчивость	Контрольная работа № 1
планировать и	в достижении цели;	Контрольная работа № 2
управлять жизненным	Внимательность;	Лекции
циклом инженерных	Аналитические умения	Практические/семинарские
продуктов и	3-1 - Изложить принципы	занятия
	имитационного моделирования	Экзамен
технических объектов,	имитационного моделирования	Окзамен

	T	
включая стадии	для принятия инженерных	
замысла, анализа	решений	
требований,	3-2 - Дать определение	
проектирования,	жизненного цикла инженерного	
изготовления,	продукта, его основных стадий	
эксплуатации,	и моделей	
поддержки,	П-2 - Иметь практический опыт	
модернизации, замены	планирования и управления	
и утилизации	жизненным циклом	
	инженерных продуктов и	
	технических объектов	
	П-3 - Формализовать и	
	согласовывать требования,	
	относящиеся к внешним	
	условиям (эксплуатации,	
	сопровождения, хранения,	
	перевозки, вывода из	
	эксплуатации)	
	У-1 - Формулировать	
	инженерные задачи с учетом	
	формализованных требований	
	1 1	
	У-4 - Выбрать оборудование и	
	технологическую оснастку при	
	разработке технических	
	заданий на проектирование и	
	изготовление инженерных	
	продуктов и технических	
	объектов	
	T. 1 T	
ОПК-4 -Способен	Д-1 - Демонстрировать	Лекции
разрабатывать	креативное мышление,	Практические/семинарские
технические объекты,	творческие способности	занятия
системы и	3-1 - Объяснить основные	Экзамен
технологические	принципы функционирования	
процессы в своей	разрабатываемых технических	
профессиональной	объектов, систем,	
деятельности с учетом	технологических процессов	
экономических,	3-2 - Изложить принципы	
экологических,	расчета экономической	
социальных	эффективности предложенных	
ограничений	технических решений	
	П-1 - Выполнять в рамках	
	поставленного задания	
	разработки технических	
	объектов, систем, в том числе	
	информационных, и	
	технологических процессов в	
	своей профессиональной	
	деятельности с учетом	
	экономических, экологических,	
	социальных ограничений	
	COGHAIDHDIA OI PAHMACHMI	

3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
домашняя работа 1	3,7	30
домашняя работа 1	3,13	30
контрольная работа 1	3,6	20
контрольная работа 2	3,12	20

Весовой коэффициент значимости результатов промежуточной аттестации по лекциям -0.4

2. Практические/семинарские занятия: коэффициент значимости совокупных результатов практических/семинарских занятий — 0.3

Текущая аттестация на практических/семинарских занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
Работа на практических занятиях	3,14	100

Весовой коэффициент значимости результатов текущей аттестации по практическим/семинарским занятиям— 1

Промежуточная аттестация по практическим/семинарским занятиям—нет Весовой коэффициент значимости результатов промежуточной аттестации по практическим/семинарским занятиям— не предусмотрено

3. Лабораторные занятия: коэффициент значимости совокупных результатов лабораторных занятий –0.35

Текущая аттестация на лабораторных занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
Лабораторная работа 2	3,9	10
Лабораторная работа 3	3,10	10
Лабораторная работа 4	3,11	10
Лабораторная работа 6	3,12	10
Лабораторная работа 12	3,13	10
отчет по лабораторной работе 2	3,10	10
отчет по лабораторной работе 3	3,11	10
отчет по лабораторной работе 4	3,12	10
отчет по лабораторной работе 6	3,13	10
отчет по лабораторной работе 12	3,14	10

Весовой коэффициент значимости результатов текущей аттестации по лабораторным занятиям -1

Промежуточная аттестация по лабораторным занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по лабораторным занятиям — не предусмотрено

4. Онлайн-занятия: коэффициент значимости совокупных результатов онлайн-занятий –не предусмотрено

Текущая аттестация на онлайн-занятиях	Сроки –	Максималь
	семестр,	ная оценка
	учебная	в баллах
	неделя	

Весовой коэффициент значимости результатов текущей аттестации по онлайнзанятиям -не предусмотрено

Промежуточная аттестация по онлайн-занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по онлайнзанятиям – не предусмотрено

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

Текущая аттестация выполнения курсовой	Сроки – семестр,	Максимальная
работы/проекта	учебная неделя	оценка в баллах

Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта— не предусмотрено

Весовой коэффициент промежуточной аттестации выполнения курсовой работы/проекта— защиты — не предусмотрено

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4 **Критерии оценивания учебных достижений обучающихся**

Результаты	Критерии оценивания учебных достижений, обучающихся на
обучения	соответствие результатам обучения/индикаторам
Знания	Студент демонстрирует знания и понимание в области изучения на
	уровне указанных индикаторов и необходимые для продолжения
	обучения и/или выполнения трудовых функций и действий,
	связанных с профессиональной деятельностью.
Умения	Студент может применять свои знания и понимание в контекстах,
	представленных в оценочных заданиях, демонстрирует освоение
	умений на уровне указанных индикаторов и необходимых для
	продолжения обучения и/или выполнения трудовых функций и
	действий, связанных с профессиональной деятельностью.
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне
	указанных индикаторов.
Другие результаты	Студент демонстрирует ответственность в освоении результатов
	обучения на уровне запланированных индикаторов.
	Студент способен выносить суждения, делать оценки и
	формулировать выводы в области изучения.
	Студент может сообщать преподавателю и коллегам своего уровня
	собственное понимание и умения в области изучения.

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Таблица 5

Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)					
№	Содержание уровня	Шкала оцениван	пия			
п/п	выполнения критерия	Традиционная	Качественная			
	оценивания результатов	характеристика уровня	характеристи			
	обучения		ка уровня			
	(выполненное оценочное					

	задание)			
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)
	(индикаторы) достигнуты в	(80-100 баллов)		
	полном объеме, замечаний нет			
2.	Результаты обучения	Хорошо		Средний (С)
	(индикаторы) в целом	(60-79 баллов)		
	достигнуты, имеются замечания,			
	которые не требуют			
	обязательного устранения			
3.	Результаты обучения	Удовлетворительно		Пороговый (П)
	(индикаторы) достигнуты не в	(40-59 баллов)		
	полной мере, есть замечания			
4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный
	не соответствует индикаторам,	НО	зачтено	(H)
	имеются существенные ошибки и	(менее 40 баллов)		
	замечания, требуется доработка			
5.	Результат обучения не достигнут,	Недостаточно свид	етельств	Нет результата
	задание не выполнено	для оцениван	ия	

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекции

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Практические/семинарские занятия

Примерный перечень тем

- 1. Свойства жидкости
- 2. Приборы для измерения давления
- 3. Сила давления на плоские стенки
- 4. Сила давления на криволинейные стенки
- 5. Уравнение Бернулли для ИЖ
- 6. Определение режимов движения
- 7. Расходомер Вентури на идеальной жидкости
- 8. Расходомер Вентури на реальной жидкости

Задание №1.

Стальной водопровод диаметром D (м) и длиной L (м), проложенный открыто, находится под давлением р (МПа) при температуре воды t_1 (°C). Определить давление воды в водоводе при изменении температуры воды до t_2 (°C).

Числовые значения необходимо брать из таблицы 1

Таблица 1.

Вариант	D, м	L, M	р, МПа	t₁, °C	t ₂ , °C	223
1	0,4	1000	2	10	15	
2	0,3	800	3	15	10	
3	0,2	900	0,5	18	25	
4	0,1	2000	4	20	15	Ï
5	0,5	3000	0,8	25	30	
6	0,6	500	4	10	20	
7	0,8	100	3,5	15	10	
8	1	200	4	18	15	
9	1,5	300	3	20	30	
10	1,2	1400	2	25	22	

LMS-платформа

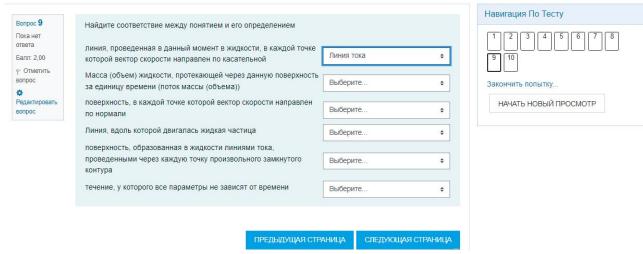
1. https://elearn.urfu.ru/course/view.php?id=6992

5.1.3. Лабораторные занятия

Примерный перечень тем

- 1. Демонстрация уравнения Д.Бернулли для одномерного потока вязкой жидкости
- 2. Режимы движения жидкости. Опыты О. Рейнольдса
- 3. Определение коэффициента гидравлического трения в круглой цилиндрической трубе
 - 4. Истечение из круглого отверстия с острой кромкой и цилиндрического насадка
 - 5. Тарировка сужающего расходомера переменного перепада давления
 - LMS-платформа
 - 1. https://elearn.urfu.ru/course/view.php?id=6992

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля


Разноуровневое (дифференцированное) обучение.

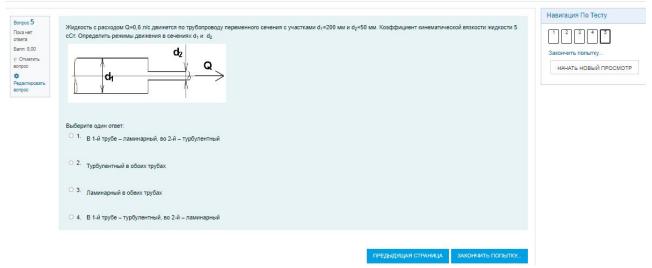
Базовый

5.2.1. Контрольная работа № 1

Примерный перечень тем

- 1. Кинематика жидкости. Основные понятия
- 2. Тензор напряжений в жидкости
- 3. Ускорение жидкой частицы

LMS-платформа


1. https://elearn.urfu.ru/course/view.php?id=6992

5.2.2. Контрольная работа № 2

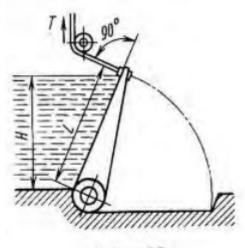
Примерный перечень тем

- 1. Одномерные потоки несжимаемой жидкости
- 2. Гидравлический расчет простого трубопровода

Примерные задания

LMS-платформа

1. https://elearn.urfu.ru/course/view.php?id=6992


5.2.3. Домашняя работа № 1

Примерный перечень тем

- 1. Гидростатика. Жидкостные приборы для измерения давления
- 2. Гидростатика. Сила давления на плоские поверхности

Задача 2.8. Клапанный затвор, имеющий плоскую поверхность размером $L \times B = 2.5 \times 10$ м, создает подпор воды H = 2.3 м. Определить:

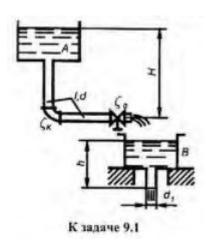
- суммарную силу натяжения тросов T, удерживающих затвор в заданном положении (без учета момента трения в опоре);
 - 2) наибольший изгибающий момент М на затворе;
 - 3) силу R, воспринимаемую цапфами опоры.

К задаче 2.8

LMS-платформа

1. https://elearn.urfu.ru/course/view.php?id=6992

5.2.4. Домашняя работа № 2


Примерный перечень тем

- 1. Гидродинамика. Гидравлический расчет простого трубопровода
- 2. Гидродинамика. Гидравлический расчет сложного трубопровода Примерные задания

Задача 9.1. Вода сливается из бака A в бак B по трубопроводу, диаметр которого $d=80\,$ мм и полная длина $L=2l=10\,$ м. Из бака B вода вытекает в атмосферу через цилиндрический насадок такого же диаметра $d_1=80\,$ мм (коэффициент расхода $\mu=0.82$).

Коэффициенты сопротивления колена и вентиля в трубе $\zeta_k = 0,3$ и $\zeta_B = 4$; коэффициент сопротивления трения $\lambda = 0,03$.

Определить напор H, который нужно поддерживать в баке A, чтобы уровень в баке B находился на высоте h=1,5 м.

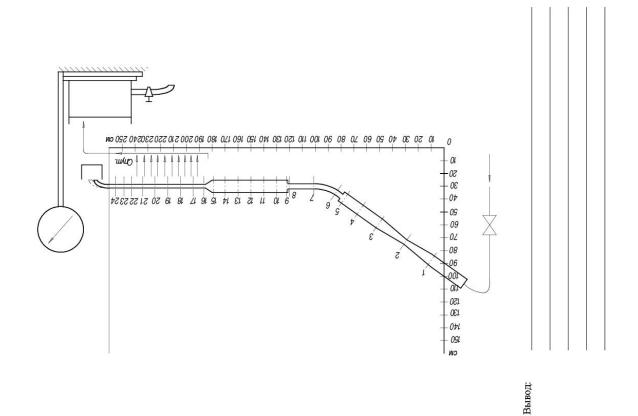
LMS-платформа

1. https://elearn.urfu.ru/course/view.php?id=6992

5.2.5. Отчет по лабораторным работам № 1

Примерный перечень тем

1. Демонстрация уравнения Д.Бернулли для одномерного потока вязкой жидкости Примерные задания


 $V^{n^i} = E^I \quad E^i |$ Потери напора, см по результатов опытов построить диаграмму Бернулли, Полный напор по-тока (по трубкам Пито), см включающую линии начального и полного напоров, ть езометрическую линию и этору потерь напора. оборудованный пьезометрами и трубками Пито. – трубопровод переменного сечения, Полный напор по-скорости), см $\left(z_i + \frac{\rho_i}{\rho_s}\right) + \frac{2\rho}{\nu_s^2}$ Таблица результатов измерений и расчётов Скор остной (дина- $\frac{v_{\mu}^{\prime}}{2g}$ мический) напор, cmВеличины напор, см $\frac{3d}{d} + \frac{1}{2}$ Тидростатический Скорость потока, у, см/с wo w Площадь сечения Диаметр сечения d, см Установка № 1 Цель работы: Расход воды *Q.* см³/с проводов 8 6 3 4 2 9 Номера сечений трубо-"Демонстрация уравнения Бернулли" по лабораторной работе № 2 УрФУ Кафедра гидравлики OTYËT

г. Екатеринбург 20__г.

Студент(ка):

Группа:

Дата:

 $\frac{cM^3}{c}$; $\frac{cM^3}{c}$;

 $Q_{nym.} = \frac{W_1}{M_1} = -$

расходы жидкостей в расчётных сечениях:

 $Q_{17} = Q_{n\alpha n.} - 0,1Q_{nym.} =$ $Q_{1-16} = Q_{nay.} =$

 $Q_{18} = Q_{HGY} - 0,3Q_{nym.} =$ $Q_{19} = Q_{MAY} - 0.5Q_{nym} = 0.00$ $Q_{20} = Q_{nav.} - 0.7Q_{nym.} =$

2. Средняя скорость потока, скоростной напор, полњый напор по средней скорости: $Q_{22-24} = Q_{n\alpha y.} - Q_{nym.} =$

 $Q_{21} = Q_{HAY} - 0.9Q_{HW} = 1$

 $\frac{v_i^2}{2g}$ $v_i = \frac{Q}{B_i}$

3. Потери напора между первым и і-тым сечением:

 $h_{w_i} = E_1 - E_i$

4. Максимальная относительная погрешность:
$$\delta E = \frac{\Delta E}{E} = \frac{\Delta \left(z + \frac{p}{\rho g}\right)}{z + \frac{p}{\rho g}} + \left|\frac{2\Delta W}{W}\right| + \left|\frac{2\Delta H}{t}\right| =$$

LMS-платформа

1. Объёмные расходы жидкости:

начальный объёмный расход $\mathcal{Q}_{\mu\sigma\nu}$

Обработка результатов измерений

1. https://elearn.urfu.ru/course/view.php?id=6992

• путевой расход

5.2.6. Отчет по лабораторным работам № 2

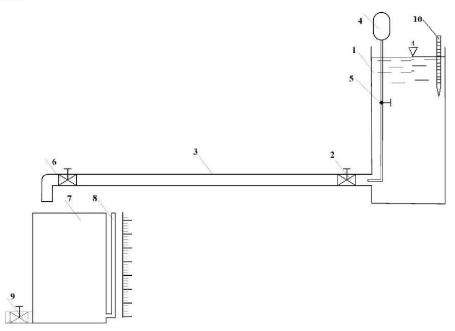
Примерный перечень тем

1. Режимы движения жидкости. Опыты О. Рейнольдса

УрФУ Кафедра гидравлики

ОТЧЁТ по лабораторной работе № 3

"Режимы движения жидкости"


Студент(ка):	<u></u>
Группа:	
Дата:	

г. Екатеринбург 20__г.

Цель работы:

- 1. <u>Определить режимы движения жидкости методом визуализации картин течения на установке Рейнольдса,</u>
- 2. Определить критическое значение числа Рейнольдса

Схема установки:

- 1 напорный бак, в котором уровень воды поддерживается на постоянной высоте; 2 вентиль;
- 3 стеклянный трубопровод с внутренним диаметром d=25мм;
- 4 баллон, наполненный трифенилметановым красителем (фуксином), плотность которого близка плотности воды;
- 5 тонкая трубка с зажимом;
- 6 вентиль;
- 7 мерный бак;
- 8 водомерное стекло;
- 9 сливной кран;
- 10 термометр.

Таблица результатов измерений и расчётов

№	№ Наименование		Номер опыта									
	Паименование	1	2	3	4	5	6	7	8	9	10	11
1	Интервал времени											
	замера <i>t</i> , с											
2	Объём воды W , м ³											
3	Расход воды Q ,м 3 /с											
4	Диаметр трубы d ,м											
5	Площадь $\pi d^2/4$, м ²					8						
6	Средняя скорость											
_	течения V, м/с		-									
7	Температура воды											
8	Вязкость ν , м ² /с											
9	Число <i>Re</i>	63									2	
10	Картина движения											
11	Режим движения											

Обработка результатов измерений

- 1. Объёмный расход воды Q = W/t.
- 2. Средняя по сечению скорость $V = 4Q/(\pi d^2)$.
- 3. Критерий Рейнольдса Re = Vd/v.
- 4. Для каждого опыта вычислить величины Q, V, Re; зарисовать картину движения подкрашенной струйки и сделать заключение о режиме движения.
- 5. Для одного опыта оценить инструментальную погрешность определения экспериментальных величин по формулам:

$$\Delta V = V(\Delta W/W + \Delta t/t + 2\Delta d/d) \text{ if } \Delta Re = Re(\Delta V/V + \Delta d/d + \Delta v/v),$$

где Δ — абсолютная максимальная погрешность измеряемой величины, определяемая точностью прибора. Обычно принимают: $\Delta d = 0.1$ мм; $\Delta W = 0.2$ наименьшего деления шкалы мерного стекла; $\Delta t = 0.5$ цены наименьшего деления шкалы секундомера; $\Delta v/v = 0.01$.

Вывод:	

LMS-платформа

1. https://elearn.urfu.ru/course/view.php?id=6992

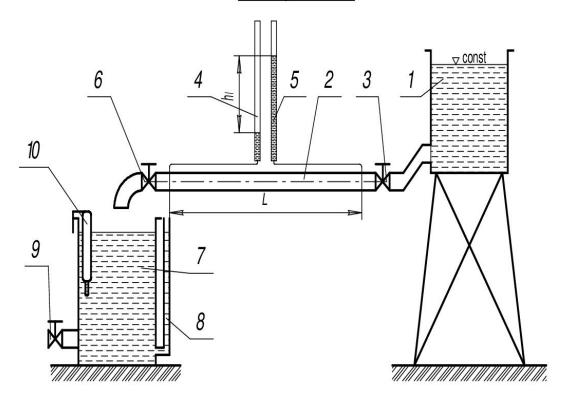
5.2.7. Отчет по лабораторным работам № 3

Примерный перечень тем

1. Определение коэффициента гидравлического трения в круглой цилиндрической трубе

УрФУ Кафедра гидравлики

ОТЧЁТ по лабораторной работе № 4


"Определение коэффициента гидравлического сопротивления по длине трубопровода круглого сечения"

Студент(ка):	8	
Группа:		
Дата:		

г. Екатеринбург 20__г.

Цель работы:	экспериментальное определение коэффициента λ_{on}
	при равномерном течении жидкости;
	определение эквивалентной шероховатости $arDelta$ трубы;
	установление зоны шероховатости
	и соответствующей расчётной зависимости для драги

Схема установки

1 – напорный бак

2 – трубопровод;

3, 6, 9 – задвижки;

4, 5 — манометры;

7 – мерный бак;

8 – водомерное стекло;

10 – термометр.

Определение 2001

Наименование	Наименование Опыты				П		
величин	1	2	3	4	5	6	Примечания
Продолжительность замера t , c							
Объём вытекшей воды W, m^3							d = мм
Расход воды, m^3/c							$L = 4.9 \ M$
Скорость потока <i>v, м/с</i>							
Потери напора <i>h_i,</i> <i>м вод. ст.</i>							t, °C =
Число Рейнольдса							$V = \underline{\qquad} c M^2/c$
Коэффициент <i>хоп</i>							

Определение зоны шероховатости

Наименование	Опыты						D
величин	1	2	3	4	5	6	Выводы
$d/\Delta_{_{^{3K6}}}$ по графику Мурина							Зона шерохова-
Шероховатость Д _{экс.} , мм							тости по графику Мурина:
Толщина ламинарной плёнки <i>δ, мм</i>							
Соотношение δ и $\Delta_{\mathfrak{R}_6}$							
Шероховатость из формул $\Delta_{3K6.}$, мм							

Обработка результатов измерений

1. Расход воды:

$$Q = \frac{W}{t}$$

2. Средняя скорость потока:

$$v = \frac{4Q}{\pi d^2}$$

3. Коэффициент гидравлического сопротивления λ_{on} из формулы Дарси:

$$\lambda_{on} = \frac{2dgh_l}{Lv^2}$$

4. Число Рейнольдса:

$$Re = \frac{vd}{v}$$

5. Толщина пристенного слоя:

$$\delta = 32,5 \frac{d}{\text{Re}\sqrt{\lambda_{on}}}$$

6. Шероховатость $\Delta_{\mathfrak{He}}$ по формулам Альтшуля и Шифринсона:

$$\lambda = 0.11 \left(\frac{68}{\text{Re}} + \frac{\Delta}{d} \right)^{0.25}$$

$$\lambda = 0.11 \left(\frac{\Delta}{d} \right)^{0.25}$$

Вывод:		
		7
		8

LMS-платформа

1. https://elearn.urfu.ru/course/view.php?id=6992

5.2.8. Отчет по лабораторным работам N_2 4

Примерный перечень тем

1. Истечение из круглого отверстия с острой кромкой и цилиндрического насадка Примерные задания

УГТУ Кафедра гидравлики

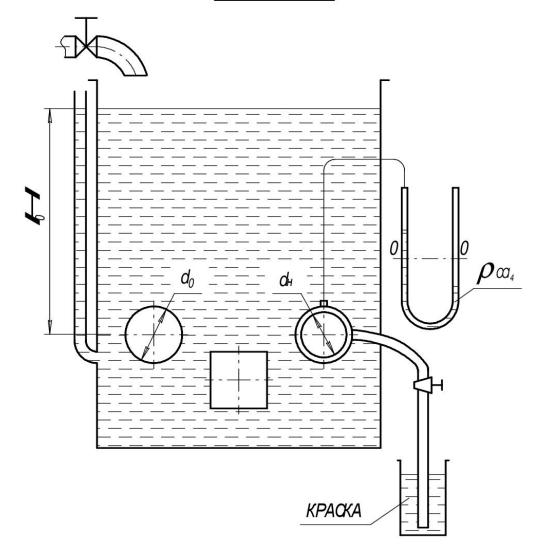
ОТЧЁТ по лабораторной работе № 6

"Истечение жидкости через отверстия и насадки"

Студент(ка):	,	
Группа:		
Дата:		

г. Екатеринбург 2020г.

 Цель работы:
 Произвести визуальное наблюдение за особенностями истечения


 жидкости через круглое отверстие с острой кромкой,

 квадратное отверстие и внешний цилиндрический насадок.

 Определить опытные значения коэффициентов скорости,

 расхода и гидравлического сопротивления для отверстия и насадка.

Схема установки.

Таблица результатов измерений и расчётов (вставить из ЛР_6.xlsm)

	Отверстие		Насадок		
Диаметр, d, мм	20		20		
Площадь, м^2	0,000314	297	0,000314		
Напор истечения, Н, м					
Координата х, м					
Координата у, м	0,525		0,525		
Вакуум внутри насадка, м ст. СС14					
Коэффициент скорости					
Среднее начение коэффициен- та скорости					
Коэффициент сопротивления					
Среднее значение коэффици- ента сопротивления					
Коэффициент сжатия внутри насадка					
Среднее значение коэффици- ента сжатия					
Коэффициент расхода					
Среднее значение коэффици- ента расхода					
Скорость истечения					
Расход					
Среднее значение напора исте- чения, м					
Среднее значение коолдинаты к, м					
Среднее значение вакуума, м ст. СС14					

Файл ЛР_6.xlsm должен быть приложен к отчету

Обработка результатов измерений

1. Коэффициенты скорости, расхода, сопротивления:

$$\varphi = \frac{X}{2\sqrt{yH_0}} \qquad \qquad \mu = \varepsilon\varphi \qquad \qquad \zeta = \frac{1}{\varphi^2} - 1$$

2. Скорости и расходы через круглое отверстие и насадок:

$$v = \varphi \sqrt{2gH_0} \qquad Q = \mu \omega_0 \sqrt{2gH_0}$$

3. Степень сжатие струи внутри насадка

$$\varepsilon_c = \frac{\omega_c}{\omega_0} = \frac{v_H}{\sqrt{2g(H_0 - H_V) + v_H(1 - \zeta_{BX})}},$$

_{где}
$$H_V = \frac{p_V}{\rho g} = \frac{p_{ATM} - p_C}{\rho g} = \left(\frac{\rho_{CCl_4}}{\rho} - 1\right)h$$

4. Относительная погрешность измерения коэффициента расхода:

$$\frac{\Delta\mu}{\mu} = \frac{\Delta X}{X} + \frac{\Delta H}{H} + \frac{\Delta y}{y}$$

_		

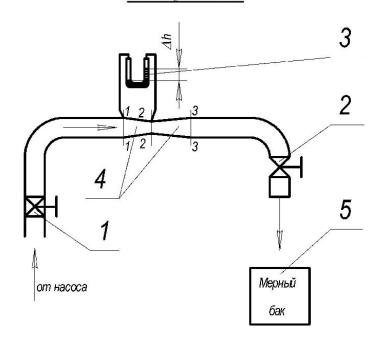
5.2.9. Отчет по лабораторным работам N_2 5

Примерный перечень тем

1. Тарировка сужающего расходомера переменного перепада давления Примерные задания

УрФУ Кафедра гидравлики

ОТЧЁТ по лабораторной работе № 12


"Тарировка сужающих расходометров переменного перепада давления"

Студент(ка):	
Группа:	
Лата:	

г. Екатеринбург 20__г.

Цель работы:	Провести тарировку сужающего расходометра переменного перепада
	давления: определить опытное значение коэффициента расхода α
	и сравнить полученное значение с табличной, стандартной величиной $lpha_n$.
	По результатам измерений построить тарировочные графики:
	$Ab = f(O)$, $A = f(D_O)$, $\alpha = f(D_O)$

Схема установки

Установка рис.1 <u>Ртутный дифференциальный манометр 3, труба Вентури 4,</u>
мерный бак 5, вентили 1 и 2.

Таблица результатов измерений и расчётов

Величины	Номер опыта (i)									
Беличины	1	2	3	4	5	6				
Объём жидкости <i>W, м</i> ³										
Время наполнения объёма $t,\ c$										
Объёмный расход Q , m^3/c										
Скорость в горловине v_d , м/с										
Перепад давления Δh ,. (мм ртвод. ст.)										
Постоянная расходометра А										

Величины		Номер опыта (i)								
Беличины	1	2	3	4	5	6				
Среднее значение постоянной расходометра <i>A</i>										
Коэффициент расхода $lpha_i$										
Стандартное значение коэффициента расхода α _n										
Отклонение $\Delta \alpha = \alpha_n - \alpha_i $										
Температура воды t° , ${^{\circ}}C$										
Вязкость воды $v, cm^2/c$										
Число Рейнольдса $Re_d = \frac{v_d d}{v}$										
Характеристики сужающего устройства (тип)	<i>d</i> =		D =		$m = \left(\frac{d}{D}\right)^2 =$					

Обработка результатов измерений

1. Опытное значение коэффициента расхода α:

$$\alpha = \frac{4Q}{\pi d^2 \sqrt{\frac{2\Delta p}{\rho_{H_2O}}}}$$

2. Постоянная расходометра:

$$A = \frac{Q}{\sqrt{\Delta h}}$$

Δh					

0

\boldsymbol{A}					12		
ļ		1		e de la companya de l		L	Re
α							
		-	l,				Re
Выводы	: _						
	_						<u> </u>
	_						

LMS-платформа

1. https://elearn.urfu.ru/course/view.php?id=6992

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Экзамен

Список примерных вопросов

- 1. Предмет и объект изучения в гидравлике. Сплошная среда как модель жидкости. Границы применения этой модели.
 - 2. Плотность и сжимаемость жидкости. Несжимаемая жидкость.
 - 3. Силы, действующие в жидкости. Давление. Единицы измерения давления.
- 4. Силы трения в жидкости. Закон Ньютона для силы трения. Динамический и кинематический коэффициенты вязкости
- 5. Абсолютное и относительное равновесие жидкости. Абсолютное равновесие несжимаемой жидкости под воздействием силы тяжести.
- 6. Свойства гидростатического давления: Основное уравнение гидростатики: его геометрическая и энергетическая интерпретация
 - 7. Абсолютное, избыточное давление и вакуум.
 - 8. Приборы для измерения давления.
- 9. Силовое воздействие покоящейся жидкости на твердые плоские и криволинейные поверхности.
 - 10. Закон Архимеда.
 - 11. Основные понятия кинематики. Расход жидкости, живое сечение потока.
 - 12. Уравнение Даниила Бернулли для элементарной трубки тока идеальной жидкости.
 - 13. Уравнение Бернулли для одномерного потока реальной жидкости.
 - 14. Энергетический смысл уравнения Бернулли.
 - 15. Диаграмма уравнения Бернулли. Гидравлический уклон.
 - 16. Примеры применения уравнения Бернулли.
- 17. Виды потерь механической энергии. Общие сведения о гидравлических сопротивлениях.
 - 18. Понятие о ламинарном и турбулентном режимах движения жидкости.
 - 19. Критическое число Рейнольдса.
- 20. Закон изменения скорости в живом сечении потока при ламинарном и турбулентном режиме. Коэффициент Кориолиса.
- 21. Установившееся ламинарное движение жидкости в круглой трубе, потери механической энергии, коэффициент гидравлического сопротивления.
- 22. Установившееся турбулентное движение жидкости в круглой трубе. Двухслойная модель турбулентного движения жидкости в трубе.
 - 23. Турбулентное движение в круглой трубе: Логарифмический профиль скорости
- 24. Потери механической энергии в трубах круглого сечения. Зоны гидравлического сопротивления в трубах. Графики И.И. Никурадзе и Г.А. Мурина.
- 25. Виды местных сопротивлений. Зависимость коэффициента местного сопротивления от числа Рейнольдса.
- 26. Истечение жидкости из отверстий и насадков различного типа. Коэффициенты сжатия, скорости и расхода.
- 27. Истечение жидкости из отверстий и насадков различного типа. Коэффициенты сжатия, скорости и расхода.

- 28. Гидравлический расчет трубопроводов. Трубопроводы с последовательным и параллельным соединением труб.
 - 29. Структурная схема гидропривода.
 - 30. Классификация гидроприводов.
 - 31. Принцип работы гидроприводов. Преимущества и недостатки гидроприводов.
 - LMS-платформа
 - 1. https://elearn.urfu.ru/course/view.php?id=6992

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направление	Вид	Технология	Компетенц	Результат	Контрольно-
воспитательной	воспитательной	воспитательной	-	Ы	оценочные
деятельности	деятельности	деятельности	ИЯ	обучения	мероприятия
		Технология	ОПК-7	Д-1	Лабораторные
	профориентацио нная деятельность	формирования			занятия
Развитие		уверенности и			
		готовности к			
самоуправления		самостоятельной			
		успешной			
		профессиональн			
		ой деятельности			