ОЦЕНОЧНЫЕ МАТЕРИАЛЫ по дисциплине

Эффективность использования энергии

Код модуля 1157066(1)

Модуль

Энергетическая и экологическая эффективность использования возобновляемой энергетики

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Нейская Светлана	кандидат	Доцент	теплоэнергетики и
	Анатольевна	технических		теплотехники
		наук, доцент		

Согласовано:

Управление образовательных программ Р.Х. Токарева

Авторы:

• Нейская Светлана Анатольевна, Доцент, теплоэнергетики и теплотехники

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Эффективность использования энергии

1.	Объем дисциплины в	3	
	зачетных единицах		
2.	Виды аудиторных занятий	Лекции	
		Практические/семинарские занятия	
3.	Промежуточная аттестация	Экзамен	
4.	Текущая аттестация	Контрольная работа 2	
		Домашняя работа 1	
		Расчетная работа 1	
		Реферат 1	

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Эффективность использования энергии

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

Код и наименование компетенции	Планируемые результаты обучения (индикаторы)	Контрольно-оценочные средства для оценивания достижения результата обучения по дисциплине
1	2	3
ПК-2 -Способен	3-3 - Интерпретировать	Домашняя работа
применять	термодинамические процессы и	Контрольная работа № 2
современные методы	циклы преобразования энергии,	Контрольная работа №1
исследования,	протекающие в	Лекции
оценивать и	теплотехнических установках	Практические/семинарские
представлять	П-3 - Предлагать современные	занятия
результаты	методы постановки,	Расчетная работа
выполненной работы	исследования и решения задач	Реферат
в области	термодинамики, для анализа	Экзамен
возобновляемой	рабочих процессов в тепловых	
энергетики	машинах, определения	
(Энергетические	параметров их работы,	
установки,	тепловой эффективности	
электростанции на	У-3 - Выбирать	
базе нетрадиционных	термодинамический анализ	

и возобновляемых источников энергии)	циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПЛ	

- 3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)
- 3.1. Процедуры текущей и промежуточной аттестации по дисциплине

1. Лекции: коэффициент значимости совокупных резу — 0.20	ультатов лекцио	нных занятий
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
контрольная работа № 1	3,7	40
реферат	3,14	20
контрольная работа № 2	3,11	40
Весовой коэффициент значимости результатов текущей а	ттестации по леі	сциям — <mark>0.4</mark>
Весовой коэффициент значимости результатов промежуто – 0.6 2. Практические/семинарские занятия: коэффициент знач результатов практических/семинарских занятий – 0.80		
Текущая аттестация на практических/семинарских	Сроки –	Максималь
занятиях	семестр,	ная оценка
	учебная	в баллах
	неделя	
домашняя работа	3,14	40
расчетно-графическая работа	3,16	60
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 1		
Промежуточная аттестация по практическим/семинарски		
Весовой коэффициент значимости результатов промежуто		и по
практическим/семинарским занятиям— не предусмотрено		
3. Лабораторные занятия: коэффициент значимости совог	купных результа	тов
пабораторных занятий –не предусмотрено	Сроки –	Максимали
		ная оценка
	семестр,	
	семестр, учебная	в баллах
	1 /	· ·
лабораторных занятий –не предусмотрено Текущая аттестация на лабораторных занятиях Весовой коэффициент значимости результатов текущей а занятиям -не предусмотрено	учебная неделя	в баллах

лабораторным занятиям – не предусмотрено

4. Онлайн-занятия: коэффициент значимости совокупных результатов онлайн-занятий			
— не предусмотрено	C	N/	
Текущая аттестация на онлайн-занятиях	Сроки – семестр, учебная	Максималь ная оценка в баллах	
	неделя	b vannax	
Весовой коэффициент значимости результатов теку			

Весовой коэффициент значимости результатов текущей аттестации по онлайнзанятиям -не предусмотрено

Промежуточная аттестация по онлайн-занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по онлайнзанятиям — не предусмотрено

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

3.2. процедуры текущен и промежуточной аттестации курсовой работы/проскта					
Текущая аттестация выполнения курсовой	Сроки - семестр,	Максимальная			
работы/проекта	учебная неделя	оценка в баллах			
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не					
предусмотрено					
Весовой коэффициент промежуточной аттестации выполнения курсовой					
работы/проекта— защиты — не предусмотрено					

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4 **Критерии оценивания учебных достижений обучающихся**

Результаты	Критерии оценивания учебных достижений, обучающихся на			
обучения	соответствие результатам обучения/индикаторам			
Знания	Студент демонстрирует знания и понимание в области изучения на			
	уровне указанных индикаторов и необходимые для продолжения			
	обучения и/или выполнения трудовых функций и действий,			
	связанных с профессиональной деятельностью.			
Умения	Студент может применять свои знания и понимание в контекстах,			
	представленных в оценочных заданиях, демонстрирует освоение			
	умений на уровне указанных индикаторов и необходимых для			
	продолжения обучения и/или выполнения трудовых функций и			
	действий, связанных с профессиональной деятельностью.			
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне			
	указанных индикаторов.			
Другие результаты	Студент демонстрирует ответственность в освоении результатов			
	обучения на уровне запланированных индикаторов.			
	Студент способен выносить суждения, делать оценки и			
	формулировать выводы в области изучения.			
	Студент может сообщать преподавателю и коллегам своего уровня			
	собственное понимание и умения в области изучения.			

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Таблица 5 Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)				
No	Содержание уровня	Шкала оценивания			
п/п	выполнения критерия	Традиционная		Качественная	
	оценивания результатов	характеристика	уровня	характеристи	
	обучения			ка уровня	
	(выполненное оценочное				
	задание)				
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)	
	(индикаторы) достигнуты в	(80-100 баллов)			
	полном объеме, замечаний нет				
2.	Результаты обучения	Хорошо		Средний (С)	
	(индикаторы) в целом	(60-79 баллов)			
	достигнуты, имеются замечания,				
	которые не требуют				
	обязательного устранения				
3.	Результаты обучения	Удовлетворительно		Пороговый (П)	
	(индикаторы) достигнуты не в	(40-59 баллов)			
	полной мере, есть замечания				
4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный	
	не соответствует индикаторам,	НО	зачтено	(H)	
	имеются существенные ошибки и	(менее 40 баллов)			
	замечания, требуется доработка				
5.	Результат обучения не достигнут,	Недостаточно свид	етельств	Нет результата	
	задание не выполнено	для оценивания			

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекции

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Практические/семинарские занятия

Примерный перечень тем

- 1. Определение потенциала энергоэффективности в различных технологиях
- 2. Энергоэффективность производства и распределения тепловой энергии

- 3. Использование биомассы и твердых бытовых отходов в качестве источника энергии
- 4. Энергоэффективность и экология

Примерные задания

Вычислить эксергетическую мощность потока воздуха из сопла Лаваля с диаметром выходного сечения 20 мм, если давление воздуха перед соплом 6 бар, температура 150° С. Воздух вытекает в окружающую среду с давлением 1 бар и температурой 10° С.

Составить эксергетический и энергетический балансы и вычислить эксергетический КПД тепловой электростанции мощностью $N=500~\mathrm{MBr}$ с эффективным КПД = 40% и КПД котельной установки = 90~%, если пар конденсируется при температуре $t2=25^\circ$ С, температура окружающей среды $t0=17^\circ$ С. Температура уходящих газов $tr=100^\circ$ С Привести энергетическую и эксергетическую диаграммы потерь. Расчеты выполнить для природного газа с высшей теплотой сгорания $50~\mathrm{M}\mathrm{Jm}/\mathrm{kr}$.

Найти термический и эксергетический КПД цикла газотурбинной установки (ГТУ) с изобарным подводом теплоты, если давление воздуха на входе в компрессор p1=1,05 бар, температура $t1=7\,$ °C, степень повышения давления в компрессоре $\beta=15$. Максимальная температура газов в цикле $t3=950\,$ °C.

Определить расходы рабочего тела и сжигаемого топлива, если мощность установки N=20 MBT, а теплотворность топлива 40~MДж/кг.

Давление и температура воздуха на входе в компрессор такие же как в окружающей среде

Эксергия алюминия 33 МДж/кг, эксергетические затраты на его производство 340 МДж/кг. В необратимых процессах производства теряется 200 МДж/кг эксергии. Оценить глубина переработки вторичных ресурсов, если в качестве таковых используется 60% сбросной эксергии

Вычислить химическую эксергию метана при температуре 25 °C LMS-платформа — не предусмотрена

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

Разноуровневое (дифференцированное) обучение.

Базовый

5.2.1. Контрольная работа №1

Примерный перечень тем

1. Определение потенциала энергоэффективности

Примерные задания

Выполнить эксергетический анализ процесса адиабатного расширения водяного пара на лопатках паровой турбины. Давление пара перед турбиной 160 бар, температура 550 °C, давление за турбиной 0,04 бара. Внутренний относи-тельный КПД турбины 0,85.

Температура окружающей среды 15 °С. Давление 1 бар.

Вычислить эксергетический КПД и определить величину эксергетических потерь процесса адиабатного дросселирования воздуха с температурой $120\,^{\circ}$ С от давления $20\,$ бар до давления $2\,$ бара.

Температура окружающей среды 25 °C. Давление 0,95 бар.

LMS-платформа – не предусмотрена

5.2.2.	Контрол	ьная]	работа	Nο	2
Пп	имерный	переч	ень тем		

Примерный перечень тем
1. мини-тест
Примерные задания
Задание 1
Химическая энергия может полностью превращаться в
□ теплоту
□ механическую энергию
□ электрическую энергию
□ ядерную энергию
□ потенциальную энергию
Задание 2
К безэнтропийным видам энергии относятся
□ теплота
□ механическая энергия
□ электрическая энергия
□ химическая энергия
□ внутренняя энергия
Задание 3
Потенциал теплоты определяется
□ температурой
□ давлением
□ количеством теплоты
□ теплоемкостью процесса
□ свойствами теплоносителей
Задание 4
При энергетическом анализе теплоэнергетических установок не учитываются
□ потери энергии
□ качество энергии
□ теплообмен между системой и средой
□ обмен механической энергией между системой и средой
□ кинетическая и потенциальная энергия системы
Задание 5
Эксергетический метод анализа основан
□ на I законе термодинамики
□ на II законе термодинамики
□ на I и II законах термодинамики
□ на количественном соотношении между теплотой и работой
на определении потенциала теплоты

Теплота в цикле холодильной установки подводится к хладоагенту

□ от окружающей среды	
□ в детандере	
□ в холодильной камере	
□ в компрессоре	
□ в турбине	
Задание 2	
Теплота в цикле теплового насоса подводится к рабочему телу	
□ от окружающей среды	
□ в детандере	
□ в холодильной камере	
□ в компрессоре	
□ в турбине	
Задание 3	
Холодопроизводительность парокомпрессорной холодильной установки с влажным	
одом компрессора 10 кВт, холодильный коэффициент при температуре в холодильной	
амере -23 °C равен 4, температура окружающей среды 27 °C. Эксергетические потери	
установки	
□ 0,5 кВт	
□ 2,5 кВт	
□ 4,5 кВт	
□ 7,5 кВт	
\square 5 kBt	
Задание 4	
Теплофикационная нагрузка теплонасосной парокомпрессорной установки с влажны	M
одом компрессора составляет 105 кВт, сетевая вода нагревается от 70 до 95 °C, ее	
ксергия изменяется на 18 кДж/кг. Отопительный коэффициент равен 3,5, теплоемкость	,
оды 4,2 кДж/(кг К). Эксергетический КПД установки	
\square 0,25	
\Box 1,2	
\square 0,6	
\square 075	
\square 0,32	
Задание 5	
Теплофикационная нагрузка теплонасосной парокомпрессорной установки с влажны	M
ходом компрессора составляет 105 кВт, сетевая вода нагревается от 70 до 95 °C, ее	
ксергия изменяется на 18 кДж/кг. Отопительный коэффициент равен 3,5, теплоемкость	•
воды 4,2 кДж/(кг К). Эксергетические потери	
□ 18 кВт	
□ 12 кВт	
□ 40 кВт	
□ 7,5 кВт	
□ 5 кВт	
LMS-платформа — не прелусмотрена	

5.2.3. Домашняя работа

Примерный перечень тем

- 1. Определение коэффициента преобразования энергии и коэффициента преобразования теплоты
 - 2. Расчет КПД солнечного коллектора
 - 3. Расчет работы, совершаемой паром в турбине

Примерные задания

В паротурбинной установке (ПТУ) мощностью N=500 МВт параметры па-ра перед турбиной: p1=170 бар, t1=550 °C. Давление пара в конденсаторе p2=0,03 бара. Охлаждающая вода в конденсаторе нагревается на $\Delta t = 15$ °C. Топливо — природный газ с теплотворной способностью QpH = 45 МДж/кг. КПД парогенератора η пг = 0,95. Температура окружающей среды 10 °C.

Выполнить энергетический и эксергетический анализ и определить величины термического и эксергетического КПД и потерь энергии и эксергии

Выполнить энергетический и эксергетический анализ воздушной холодильной установки с холодопроизводительностью = $100~\rm MДж/ч$. Давление воздуха, поступающего в холодильную камеру, р1 = 1 бар, температура t4 = $-20~\rm ^{\circ}C$. Температура воздуха перед компрессором t1 = $-5~\rm ^{\circ}C$ В теплообменнике воздух охлаждается до температуры t3 = $25~\rm ^{\circ}C$

В холодильной камере поддерживается температура -2 оС, температура окружающей среды 24 °С. Воздух считать идеальным газом с постоянной теплоемкостью, определяемой по классической теории

Начальная температура воды, поступающая в дом из водопровода, составляет 10° C, а использование этой воды для нужд (умывание, душ, отопление, уборка и пр.) требует ее подогрева. Для ее разогрева хотя бы до 40 градусов потребуется затратить энергию — газ, дрова, электроэнергия, одним словом, заплатить за ее нагрев. Зимой солнечный коллектор сможет подогреть воду от 40 до 70° C, а летом — до 100° C.

Насколько эффективным будет использование солнечного отопления LMS-платформа — не предусмотрена

5.2.4. Расчетная работа

Примерный перечень тем

- 1. Термодинамический расчет цикла паротурбинной установки с отбором пара на теплофикацию. Использование теплового насоса для теплофикации
 - 2. Эксергетический баланс теплообменых аппаратов

Примерные задания

В теплофикационном цикле мощностью N давление пара перед турбиной р1, температура t1, давление в конденсаторе p2. При давлении p0 на теплофикацию отбирается D0 тонн/час пара. Сетевая вода нагревается в сетевом подогревателе от 75 до 95 °C. Охлаждающая вода из окружающей среды с температурой 15 °C нагревается в конденсаторе на 8 °C. Потери энергии характеризуются относительными КПД турбины, насоса, механическим, электрическим, паропроводов и котельной установки. значениями которых задаться самостоятельно.Топливо – природный газ с теплотой сгорания 50 МДж/кг. Уходящие газы имеют температуру 95 °C. Выполнить эксергетический анализ теплофикационного цикла. Сравнить результаты эксергетического и энергетического анализа комбинированного и раздельного получения теплоты и электрической энергии.

Выполнить эксергетический анализ маслоохладителя паровой турбины в котором масло охлаждается от температуры 55 °C до 45 °C, а вода поступает с температурой . Расходы масла и воды и , соответственно, теплоемкости масла и воды 1,92 кДж/(кг•К) и 4,2 кДж/(кг•К), соответственно. Относительный КПД теплообменника , коэффициент теплопередачи 200 Вт/(м2•К). Учесть составляющую эксергетических затрат, связанную с эксергией металла, теплообменных поверхностей для прямоточной и противоточной схем движения теплоносителей. Плотность металла 8000 кг/м3 ,толщина поверхностей 3 мм, эксергия металла 75 МДж/кг. Срок эксплуатации 6 лет. Температура окружающей среды 25 °C.

LMS-платформа – не предусмотрена

5.2.5. Реферат

Примерный перечень тем

- 1. Оценка эффективности производства энергии
- 2. Коэффициенты преобразования энергии и теплоты в тепловом насосе
- 3. Парокомпрессионная теплонасосная установка
- 4. Низкотемпературные источники в теплонасосной установке
- 5. Схемы ГеоЭС
- 6. Использование солнечной энергии для нагрева теплоносителя
- 7. Устройство солнечных коллекторов и их КПД
- 8. Получение электроэнергии с использованием солнечного излучения
- 9. Ветротурбины
- 10. Способы термической переработки древесины, древесных отходов, гранул и щепы
- 11. Биореактор для переработки органических отходов. Состав биогаза
- 12. Основные проблемы сжигания твердых бытовых отходов.

Примерные задания

Реферат должен содержать достаточное количество сносок. Текст реферата должен быть набран шрифтом Times New Roman, 14, с одинарным или полуторным межстрочным интервалом. Параметры страницы A4 должны быть стандартными.

Общий объем реферата не должен быть менее 20 или более 30 страниц.

Тема должна быть сформулирована грамотно: в названии реферата следует определить четкие рамки рассмотрения темы, которые не должны быть слишком широкими или слишком узкими. Следует, по возможности, воздерживаться от использования в названии спорных с научной точки зрения терминов, излишней наукообразности, а также от чрезмерного упрощения, равно как и усложнения формулировок.

Реферат должен состоять из четырех основных частей:

- введение,
- основная часть (она может состоять из нескольких глав),
- заключение.
- список использованной литературы.

LMS-платформа – не предусмотрена

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Экзамен

Список примерных вопросов

- 1. Коэффициента преобразования энергии и коэффициента преобразования теплоты
- 2. Работы, совершаемые в газовой и паровой турбинах
- 3. КПД солнечного коллектора
- 4. Теплоты сгорания различных топлив
- 5. Коэффициенты преобразования энергии и теплоты в тепловом насосе
- 6. Парокомпрессионная теплонасосная установка
- 7. Низкотемпературные источники в теплоты
- 8. Схемы ГеоЭС
- 9. Использование солнечной энергии для нагрева теплоносителя
- 10. Устройство солнечных коллекторов и их КПД
- 11. Получение электроэнергии с использованием солнечного излучения
- 12. Ветротурбины
- 13. Способы термической переработки древесины, древесных отходов, гранул и щепы
- 14. Биореактор для переработки органических отходов. Состав биогаза
- 15. Основные проблемы сжигания твердых бытовых отходов
- LMS-платформа не предусмотрена

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.