МИНИСТЕРСТВО НАУКИ и ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н.Ельцина»

Уральский энергетический институт

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
ЭЛЕКТРОТЕХНИЧЕСКИЕ КОМПЛЕКСЫ И СИСТЕМЫ

Перечень сведений о рабочей программе	Учетные данные	
дисциплины		
Программа аспирантуры	Код ПА 2.4.2.	
Электротехнические комплексы и системы		
Группа специальностей	Код 2.4.	
Энергетика и электротехника		
Федеральные государственные требования (ФГТ)	Приказ Министерства науки и высшего образования Российской Федерации от 20 октября 2021 г. № 951	
Самостоятельно утвержденные требования (СУТ)	Приказ «О введении в действие «Требований к разработке и реализации программ подготовки научных и научно-педагогических кадров в аспирантуре УрФУ» №315/03 от 31.03.2022	

Екатеринбург 2022 г. Рабочая программа дисциплины составлена авторами:

№ п/п	ФИО	Ученая степень, ученое звание	Должность	Структурное подразделение	Подпись
1	Поляков	доктор	профессор	УралЭНИН,	
	Владимир Николаевич	технических		кафедра	
		наук, старший		«Электропривод	Ahr
		научный		и автоматизация	18100
		сотрудник		промышленных	
				установок»	
2 '	Костылев	кандидат	зав.	УралЭНИН,	
	Алексей Васильевич	технических	кафедрой	кафедра	
		наук, доцент		«Электропривод	
				и автоматизация	
				промышленных	-
				установок»	
3	Фризен Василий	доктор	зав.	УралЭНИН,	11
	Эдуардович	технических	кафедрой	кафедра	1//
		наук, доцент		«Электро-	
				техника»	111

Рекомендовано учебно-методическим советом института Уральский энергетический

Председатель УМС института

M

Н.В.Гредасова

Протокол № 3 от 16.05.2022 г.

Согласовано:

Начальник ОПНПК

Е.А. Бутрина

1. ОБЩАЯ ХАРАКТЕРИСТИКА ДИСЦИПЛИНЫ «ЭЛЕКТРОТЕХНИЧЕСКИЕ КОМПЛЕКСЫ И СИСТЕМЫ»

1.1.Аннотация содержания дисциплины

В дисциплине «Электротехнические комплексы и системы» углубленно изучаются основные актуальные проблемы построения математического описания электротехнических комплексов и систем, таких как электрические и электромеханические преобразователи, вопросы проектирования с учетом требований обеспечения энергоэффективности, а также управления данными системами и комплексам.

Дисциплина «Электротехнические комплексы и системы» является профилирующей для данной научной специальности.

1.2. Язык реализации дисциплины - русский

1.3. Планируемые результаты обучения по дисциплине

перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения программы аспирантуры

В результате освоения дисциплины аспирант должен:

Знать:

- перспективные направления развития отечественных и зарубежных технологий, применяемых в электротехническом оборудовании.
- современные естественнонаучные и прикладные задачи проектирования электротехническими системами и комплексами, методы и средства их решения в научно-исследовательской, проектно-конструкторской, производственнотехнологической и других видах профессиональной деятельности

Уметь:

применять инновационные технологии проектирования на реконструируемых и вновь сооружаемых электротехнических объектах

Владеть (демонстрировать навыки и опыт деятельности):

- методами анализа электротехнических систем и комплексов
- методами проектирования электротехнических систем и комплексов с учетом требований современного производства

1.4. Объем дисциплины

	п/ Всего конта часов ая ра		исциплины	Распределение объема дисциплины по семестрам (час.)	
№ п/ п			В т.ч. контактн ая работа (час.)*	6	
1.	Аудиторные занятия	4	4	4	
2.	Лекции	4	4	4	
3.	Практические занятия	0	0	0	
4.	Самостоятельная работа аспирантов, включая все виды текущей аттестации	86	0,6		

5.	Промежуточная аттестация	18	1	Э,18
6.	Общий объем по учебному плану,	108	5,6	108
	час.			
7.	Общий объем по учебному плану,	3		3
	3.e.			

^{*}Контактная работа составляет:

- в π/π 2,3, количество часов, равное объему соответствующего вида занятий;
- в п.4 количество часов, равное сумме объема времени, выделенного преподавателю на консультации в группе (15% от объема аудиторных занятий).
- в п.5 количество часов, равное сумме объема времени, выделенного преподавателю на проведение соответствующего вида промежуточной аттестации одного аспиранта.

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Теория электропривода	Установившиеся режимы работы электропривода. Частотный и спектральный анализ. Учет упругих звеньев и связей. Учет нелинейностей. Построение адекватных моделей с использованием компьютерных технологий. Переходные процессы в электроприводах. Линейные и нелинейные системы, передаточные и переходные функции электропривода. Примеры формирования оптимальных переходных процессов при разгоне и торможении электропривода с учетом процессов в рабочем механизме. Регулирование координат электропривода. Характеристика систем электроприводов: управляемый преобразовательдвигатель постоянного тока, преобразователь частоты — асинхронный двигатель, системы с шаговыми двигателями, системы с линейными двигателями и сферы их применения.
P2	Автоматическое	Основные функции и структуры автоматического
	управление	управления электроприводом. Типовые функциональные
	электроприводом	схемы и типовые системы, осуществляющие автоматический пуск, стабилизацию скорости, реверс и остановку электродвигателей. Принципы выбора элементной базы. Общие вопросы теории замкнутых систем автоматического управления электроприводом при заданном рабочем механизме. Методы анализа и синтеза замкнутых, линейных и нелинейных, непрерывных и дискретных САУ. Применение методов вариационного исчисления и пакетов прикладных программ для ЭВМ.
P3	Теория и принципы	Научные основы и принципы работы наиболее
	работы комплектных	распространенных комплектных узлов
	узлов	электрооборудования (по отраслям). Преобразователи напряжения, в том числе: генераторы и электромашинные
	электрооборудования	преобразователи, управляемые вентильные преобразователи постоянного и переменного тока в постоянный, инверторы, непосредственные преобразователи частоты переменного тока и др.
P4	Электромеханика	Роль электромеханики и электрических аппаратов в современной технике

	лежащих в основе функционирования электрических аппаратов. Научные основы создания и совершенствования
	Анализ и исследование физических явлений, лежащих в основе функционирования электрических
	Трансформаторы.
	грансформаторов. Специальные электрические машины.
	Оптимизация электрических машин и трансформаторов.
	Применение электронной вычислительной техники.
	Коммутация коллекторных машин
	машинах.
	Потери и тепловые явления в электрических
	трансформаторного оборудования. Современные методы и методики.
	испытаний электрических машин, трансформаторного оборудования. Современные
	Особенности проведения электромагнитных
	экспериментальных исследований.
	принятых допущений по результатам
	значений параметров при проектировании, оценка
	принятых допущений, обеспечение заданных
	исполнение и физические процессы при изменении режима работы. Расчет параметров при наличии
	величина, отображающая конструктивное
	и трансформаторного оборудования. Параметр как
	Параметры и характеристики электрических машин
	преобразователей. Тенденции развития.
	электромеханических/электромагнитных
	Математические модели
	распределение магнитных масс и плотности токов в пространстве). Обоснования принятых допущений.
	(равномерное, неравномерное, дискретное
	особенностей конструктивного исполнения
	и анизотропии свойств магнитных материалов,
	Допущения, связанные с учетом нелинейности
,	электрической и механической энергии.
	позиций теории цепей Методы анализа и синтеза преобразователей
l	Методы исследования электрических машин с
ı	Электромагнитное поле в электрических машинах.
	преобразователей.
	электрических, электромеханических
	Научные основы создания и совершенствования
ı	электромеханических преобразователей энергии.
	Анализ и исследование физических явлений, лежащих в основе функционирования электрических,

	оценка	прин	КИТК	допуще	ений	по	результатам
	эксперим	ентал	тьных и	сследов	аний.		
	Особенно	ости	проведе	ения ис	пытані	ий з	электрических
	аппарато	В.					

3. ОРГАНИЗАЦИЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ, САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ

3.1. Практические занятия

не предусмотрено

- 3.2. Примерная тематика самостоятельной работы
- **3.2.1.** Примерный перечень тем рефератов (эссе, творческих работ) не предусмотрено
- **3.2.2.** Примерная тематика *индивидуальных* или групповых проектов не предусмотрено

4. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (Приложение 1)

4.1. КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

Применяются утвержденные на кафедре критерии оценивания достижений аспирантов по каждому контрольно-оценочному мероприятию. Система критериев оценивания опирается на три уровня освоения компонентов компетенций: пороговый, повышенный, высокий.

Компоненты	Признаки уровня освоения компонентов компетенций				
компетенций	пороговый	высокий			
Знания	Аспирант демонстрирует	Аспирант	Аспирант может		
	знание-знакомство,	демонстрирует	самостоятельно		
	знание-копию: узнает	аналитические знания:	извлекать новые знания		
	объекты, явления и	уверенно воспроизводит	из окружающего мира,		
	понятия, находит в них	и понимает полученные	творчески их		
	различия, проявляет	знания, относит их к той	использовать для		
	знание источников	или иной	принятия решений в		
	получения информации,	классификационной	новых и нестандартных		
	может осуществлять	группе, самостоятельно	ситуациях.		
	самостоятельно	систематизирует их,			
	репродуктивные действия	устанавливает			
	над знаниями путем	взаимосвязи между			
	самостоятельного	ними, продуктивно			
	воспроизведения и	применяет в знакомых			
	применения информации.	ситуациях.			
Умения	Аспирант умеет корректно	Аспирант умеет	Аспирант умеет		
	выполнять предписанные	самостоятельно	самостоятельно		

	действия по инструкции,	выполнять действия	выполнять действия,
	алгоритму в известной	(приемы, операции) по	связанные с решением
ситуации, самостоятельно		решению нестандартных	исследовательских
выполняет действия по		задач, требующих	задач, демонстрирует
	решению типовых задач,	выбора на основе	творческое
	требующих выбора из	комбинации известных	использование умений
	числа известных методов,	методов, в	(технологий)
	в предсказуемо	непредсказуемо	
	изменяющейся ситуации	изменяющейся ситуации	
Личностные	Аспирант имеет низкую	Аспирант имеет	Аспирант имеет
качества	мотивацию учебной	выраженную мотивацию	развитую мотивацию
	деятельности, проявляет	учебной деятельности,	учебной и трудовой
	безразличное,	демонстрирует	деятельности,
	безответственное	позитивное отношение к	проявляет
	отношение к учебе,	обучению и будущей	настойчивость и
	порученному делу	трудовой деятельности,	увлеченность,
		проявляет активность.	трудолюбие,
			самостоятельность,
			творческий подход.

4.2. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.2.1. Перечень примерных вопросов для экзамена

- 1. Структура и основные элементы автоматизированного электропривода. Уравнение движения многомассовой механической части, механическая часть электропривода как объект управления, структурная схема, передаточные функции, частотные характеристики.
- 2. Электромеханические свойства двигателей. Обобщенная электрическая машина. Режимы преобразования энергии.
- 3. Математическое описание и электромеханические свойства двигателей постоянного тока с независимым возбуждением двигателей постоянного тока с последовательным возбуждением, асинхронных двигателей с короткозамкнутым ротором и с фазовым ротором, синхронных двигателей и др.
- 4. Энергетика электропривода. Оценка экономичности преобразования и потребления электроэнергии. Потери в установившихся и переходных режимах. Методы снижения потерь в электроприводе. Энергосбережение средствами электропривода.
- 5. Основы выбора установленной мощности двигателя при различных режимах работы электропривода.
- 6. Динамика обобщенной разомкнутой электромеханической системы. Математическое описание и структурные схемы. Динамические свойства, частотные характеристики. Переходные процессы в электромеханической системе при использовании различных типов электрических двигателей и при разных законах изменения управляющих воздействий.
- 7. Регулирование скорости электропривода. Показатели качества регулирования. Диапазон регулирования. Основные способы регулирования скорости двигателей постоянного тока, их особенности, сравнительная оценка. Основные способы регулирования скорости электропривода переменного тока, их особенности, сравнительная оценка.
- 8. Структура электропривода как автоматической системы и ее основные элементы. Задачи и принципы автоматического управления электроприводом.

- 9. Системы полупроводникового управления электроприводами постоянного тока. Математические модели и структуры силовой части электропривода. Системы управления электроприводами постоянного тока по цепи якоря и по цепи возбуждения. Особенности построения систем управления с подчиненным регулированием переменных. Синтез контурных регуляторов. Частотные характеристики и переходные функции при различных критериях оптимизации систем с подчиненным регулированием. Особенности построения и расчета регуляторов тока якоря, однократных и двухкратных регуляторов скорости, систем двухзонного регулирования скорости, систем автоматического регулирования положения.
- 10. Системы полупроводникового управления электроприводами переменного тока. Основные виды регулируемых электроприводов переменного тока. Современный подход к анализу и синтезу автоматического управления электроприводами переменного тока с полупроводниковыми преобразователями. Системы асинхронных электроприводов с амплитудным (фазовым) управлением. Структуры систем автоматического управления (САУ). Особенности анализа и синтеза систем управления, динамические и статические характеристики асинхронного электропривода с фазовым управлением. Рациональные области применения.
- 11. Системы управления частотно-регулируемых асинхронных электроприводов. Режимы работы асинхронного двигателя при частотном способе регулирования скорости, основной закон частотного управления. Принципы построения, особенности анализа и синтеза скалярных и векторных систем управления. Понятие об ориентации системы координат и выбор рациональной системы координат для синтеза САУ асинхронным частотно-управляемым электроприводом. Структуры систем частотно-регулируемых асинхронных электроприводов с управляемым скольжением, с частотно-токовым управлением, с системой «Тransvektor». Особенности структур и качественные показатели систем частотно-управляемых асинхронных электроприводов с прямым управлением моментом. Особенности применения различных типов частотно-управляемых асинхронных электроприводов.
- 12. Системы управления частотно-регулируемых синхронных электроприводов. Структура САУ синхронным электроприводом. Особенности синтеза регуляторов, статические и динамические показатели, области применения.
- 13. Цифровые (микропроцессорные) системы автоматического управления электроприводами. Преобразование непрерывных сигналов в цифровую форму. Квантование по уровню и по времени. Частотный спектр дискретного сигнала. Математическое описание одномерных и многомерных дискретных систем. Частотные характеристики, динамические свойства. Описание дискретных систем в пространстве состояний. Функциональные и структурные схемы цифровых регуляторов скорости, скоростей, положения автоматизированных электроприводов. Специфические особенности анализа и синтеза цифровых систем в сравнении с непрерывными. Дискретные аналоги оценок и критериев, принятых для непрерывных автоматических систем. Критерии оптимальности автоматизированных электроприводов. Принципы анализа и синтеза сптимальных дискретных систем электропривода.
- 14. Преобразователи для электроприводов с двигателями постоянного тока. Трехфазный выпрямительно-инверторный преобразователь с нулевым проводом. Режим прерывистого и непрерывного тока Регулировочная и внешняя характеристика системы тиристорный преобразователь-двигатель. Инверторный режим преобразователя, основные свойства инверторного режима.
- 15. Трехфазный мостовой преобразователь. Принципиальная схема и анализ ее работы. Понятие обобщенного преобразователя. Реверсивные преобразователи. Согласование углов управления вентильными комплектами. Основные схемы двухкомплектных преобразователей с совместным и раздельным управлением.

- 16. Коэффициент мощности преобразователя, методы его повышения, влияние преобразователей на питающую сеть, способы улучшения электромагнитной совместимости полупроводниковых электроприводов с питающей сетью.
- 17. Преобразователи для электроприводов с двигателями переменного тока. Двухзвенные преобразователи частоты с автономным инвертором напряжения (АИН) и автономным инвертором тока (АИТ). Анализ электромагнитных процессов. Основные свойства преобразователей, сравнительный анализ.
- 18. Непосредственные преобразователи частоты (НПЧ) для питания асинхронных двигателей (АД). Схемы силовых цепей. Достоинства и недостатки НПЧ. Области применения.
- 19. Тиристорные преобразователи напряжения (ТПН) для питания статорных цепей асинхронных двигателей. Регулировочные характеристики. Основные режимы работы системы ТПН-АД. Достоинства и недостатки асинхронных электроприводов с ТПН.
- 20. Преобразователи электроэнергии с импульсным регулированием. Широтно- импульсные преобразователи (ШИП) для двигателей постоянного тока. Анализ работы одноключевого и четырехключевого ШИП. Автономные инверторы двухзвенных преобразователей частоты с широтно-импульсной модуляцией выходного напряжения. Автономный инвертор тока с широтно-импульсной модуляцией (ШИМ). Двухуровневый трехфазный АИН.
- 21. Элементы систем управления электроприводами. Операционные усилители, особенности построения, разновидности, использование для построения регуляторов САУ. Элементы цифровых систем управления. Микроконтроллеры. Логические контроллеры. Аналогоцифровые преобразователи (АЦП) и цифро-аналоговые преобразователи (ЦАП). Датчики систем электропривода.
- 22. Какие допущения применяют при учете нелинейности и анизотропии свойств магнитных материалов и особенностей конструктивного исполнения. Обоснования принятых допущений.
- 23. Математические модели электромеханических/электромагнитных преобразователей и электрических аппаратов. Тенденции развития.
- 24. Параметры и характеристики электрических машин и трансформаторного оборудования. Параметр как величина, отображающая конструктивное исполнение и физические процессы при изменении режима работы.
- 25. Расчет параметров при наличии принятых допущений, обеспечение заданных значений параметров при проектировании, оценка принятых допущений по результатам экспериментальных исследований.
- 26. Особенности проведения электромагнитных испытаний электрических машин трансформаторного оборудования. Современные методы и методики.
- 27. Параметры и характеристики электрических аппаратов. Параметр как величина, отображающая конструктивное исполнение и физические процессы при изменении режима работы.
- 28. Расчет параметров при наличии принятых допущений, обеспечение заданных значений параметров при проектировании, оценка принятых допущений по результатам экспериментальных исследований.
- 29. Особенности проведения испытаний электрических аппаратов.
- 30. Основные магнитные материалы, применяемые в электрических машинах и аппаратах. Магнитные характеристики материалов.
- 31. Электродинамические усилия в электрических аппаратах. Методы их расчета.
- 32. Реакторы. Назначение. Конструкции. Использование. Работа реакторов в комплекте с силовыми электронными коммутаторами.
- 33. Роль электромеханики и электрических аппаратов в современной технике. Развитие энергетики и электроэнергетических систем. Выработка электроэнергии на тепловых, гидравлических и атомных станциях.
- 34. Возобновляемые источники электроэнергии, автономные электроэнергетические системы, проблема охраны окружающей среды.

- 35. Применение электрических машин, трансформаторов и аппаратов в системах генерирования, передачи, распределения и потребления электрической энергии.
- 36. Типы электрических машин. Общая классификация электрических и электронных аппаратов.
- 37. Оценка эффективности, качества и надежности электрических машин и аппаратов.
- 38. Основные элементы конструкции электромеханических преобразователей, трансформаторов, электрических аппаратов и технология их изготовления. Безотходная и малоотходная технология.
- 39. Испытания электрических машин и аппаратов. Вибрации, шумы и радиопомехи, допустимые нормы и способы их снижения. Электромагнитная совместимость электрических машин и аппаратов с системой и окружающим оборудованием.
- 40. Исторические сведения о развитии электромеханики, электрических и электронных аппаратов.
- 41. Электромеханические преобразование энергии и физические законы, на которых оно основано.
- 42. Два подхода к описанию электромагнитных процессов в электрических машинах: с позиций теории поля и теории электрических цепей. Сравнительное сопоставление физического моделирования, аналитических и численных методов решения уравнений.
- 43. Обобщенная электрическая машина математическая модель электрических машин всех типов. Допущения при записи уравнений обобщенной машины. Дифференциальные уравнения в различных системах координат. Уравнения Парка-Горева синхронной машины. Физический смысл параметров обобщенной машины коэффициентов в дифференциальных уравнениях.
- 44. Уравнения установившегося режима работы асинхронных и синхронных машин. Векторные диаграммы и эквивалентные схемы замещения. Основные характеристики двигателей и генераторов.
- 45. Электромагнитный момент обобщенной электрической машины, уравнение движения ротора. Статические и динамические механические характеристики электродвигателей. Способы измерения момента.
- 46. Временные и пространственные гармоники в электрических машинах, параметры высших гармоник. Методы расчета гармоник МДС и магнитной индукции в воздушном зазоре с учетом формы зубцовой зоны сердечников и нелинейных свойств магнитной цепи.
- 47. Исследование электрических машин при несинусоидальном и несимметричном напряжении. 26. Управление электрическими двигателями от полупроводниковых преобразователей. 27. Работа синхронного генератора на выпрямительную нагрузку.
- 48. 28. Вентильные двигатели.
- 49. 29. Особенности работы электрических машин при пульсирующем токе.
- 50. Многообмоточные электрические машины. Математические модели асинхронных двигателей с двойной беличьей клеткой и синхронных машин с демпферными обмотками.
- 51. Учет влияния вихревых токов, гистерезиса и потерь в стали.
- 52. Математическое моделирование электрических машин с изменяющимися параметрами. Учет вытеснения тока в проводниках, насыщения и изменения момента инерции.
- 53. Несимметричные электрические машины. Способы математического описания и математические модели синхронных и асинхронных машин с магнитной и электрической несимметрией статора и ротора. Однофазные двигатели переменного тока.
- 54. Электрическая машина как элемент электромеханической системы. Математические модели электрических машин с учетом внешних элементов, включенных в цепи статора и ротора.
- 55. Электромагнитное поле в электрических машинах. Область поля электрической машины. Математическое описание электромагнитного поля электрической машины. Разделение области поля на вращающуюся и неподвижную части. Граничные и начальные условия.

- 56. Электромагнитная сила, действующая в области паза с током в магнитном поле (распределение силы между проводом и стенками паза). Зависимость силы от величины поля, полученная из энергетических соображений. Аналитические выражения электромагнитных сил и моментов.
- 57. ЭДС, индуцированная в проводнике, расположенном в пазу электрической машины, зависимость ее от индукции в зазоре.
- 58. Магнитное поле в гладком зазоре между статором и ротором. Магнитное поле в ярмах статора и ротора (учет кривизны, расчет магнитного напряжения, вытеснение магнитного потока в окружающее пространство).
- 59. Методы и результаты исследования магнитного поля в зубчатом воздушном зазоре. Поле в области пазов с током и без тока при односторонней и двусторонней зубчатости. Подход к вычислению удельной проводимости зазора. Коэффициент воздушного зазора.
- 60. Гармонических анализ удельной магнитной проводимости воздушного зазора, МДС и магнитной индукции в воздушном зазоре машин переменного тока.
- 61. Взаимная индукция однофазных и многофазных обмоток для токов прямой, обратной и нулевой последовательностей в машинах переменного тока.
- 62. Поле рассеяния в пазах различной формы. Расчет индуктивностей пазового, лобового и дифференциального рассеяния для однослойных и двухслойных однофазных обмоток.
- 63. Магнитное поле в области торцевых частей машины. Расчетная длина машины. Поле лобовых частей. Электромагнитные силы, действующие на лобовые части.
- 64. Магнитные поля и параметры синхронных машин при симметричной и несимметричной нагрузках, переходные и сверхпереходные параметры.
- 65. Методы расчета электромагнитных полей в распределенных вторичных контурах (полый и массивный ротор в асинхронных машинах, массивные полюса и массивный неявнополюсный ротор в синхронных машинах). Эквивалентные параметры роторных контуров в асинхронных и синхронных машинах.
- 66. Влияние вихревых токов в проводниках, лежащих в пазу, на их активное и индуктивное сопротивление. Меры по уменьшению добавочных потерь в обмотках (транспозиция проводников, скрутка в лобовых частях).
- 67. Щеточный контакт и его вольтамперные характеристики. Уравнения классической теории коммутации, виды коммутационных процессов. Анализ факторов, влияющих на коммутацию. 48. Способы улучшения коммутации. Критерии потенциальной устойчивости и меры борьбы с круговым огнем. Настройка коммутации.
- 68. Виды потерь и физические причины их возникновения в электрических машинах. Методики расчета основных и добавочных потерь в машинах переменного и постоянного тока. КПД электрических машин и трансформаторов, способы его расчетного и экспериментального определения.
- 69. Физические процессы нагревания и охлаждения электрических машин и трансформаторов. Уравнения теплообмена и тепловые параметры. Методы расчета переходных и установившихся температур. Эквивалентные тепловые схемы замещения электрических машин.
- 70. Электроизоляционные материалы и классы их нагревостойкости. Зависимость срока службы изоляции от температуры и режимов работы электрических машин.
- 71. Системы косвенного и непосредственного охлаждения электрических машин и трансформаторов. Расчет системы охлаждения. Способы интенсификации охлаждения. Тепловые испытания электрических машин.
- 72. Использование ЭВМ для исследования и проектирования электрических машин и трансформаторов. Области применения АВМ и ЦВМ.
- 73. Математические модели электрических машин и трансформаторов, работающих в статических и динамических режимах.
- 74. Постановка задач оптимизации и методы их решения. Критерии оптимальности и лимитеры. Возможности машинного расчета и конструирования электрических машин и трансформаторов. Системы автоматизированного проектирования (САПР).

- 75. Электрические машины автоматических устройств: исполнительные двигатели переменного и постоянного тока; синхронные микродвигатели с постоянными магнитами, шаговые, реактивные, гистерезисные, с электромагнитной редукцией частоты вращения.
- 76. Электрические машины автоматических устройств: двигатели с катящимся и гибким волновым ротором; универсальные коллекторные двигатели; информационные электрические микромашины.
- 77. Многомерные электрические машины, двигатели со сферическим и коническим ротором, торцевые конструкции электрических машин, униполярные машины.
- 78. Электрические машины колебательного и возвратно-поступательного движения, линейные и дугостаторные двигатели, МГД-генераторы и насосы.
- 79. Электрические машины со сверхпроводящими обмотками.
- 80. Емкостные электрические машины.
- 81. Трансформаторы как электромагнитные преобразователи энергии. Физические процессы в трансформаторе. Магнитные системы и обмотки трансформаторов, группы соединения обмоток. Основные уравнения и схема замещения трансформатора. Параметры трансформаторов, методы их определения.
- 82. Параллельная работа трансформаторов. Несимметричные режимы работы трансформаторов. Переходные процессы в трансформаторах.
- 83. Классификация трансформаторов, их специальные типы.
- 84. Принципы построения макроскопических моделей электромеханических систем электрических аппаратов. Элементы, фазовые переменные, компонентные и топологические уравнения электрической, магнитной, механической и тепловой подсистем. Составление эквивалентных схем.
- 85. Методы анализа электромагнитных полей. Законы электромагнитного поля. Дифференциальные уравнения для параметров поля. Численные методы (метод конечных разностей, метод конечных элементов, метод интегральных уравнений) и программное обеспечение для расчетов полей электромагнитных систем.
- 86. Методы расчетов параметров макромоделей (ЭДС, индуктивностей, силовых характеристик) на основе анализа электромагнитного поля.
- 87. Магнитные материалы, применяемые в электрических аппаратах и машинах. Магнитные характеристики материалов. Методы и средства измерений магнитных полей, испытаний магнитных материалов и изделий из них.
- 88. Электродинамические силы в электрических аппаратах. Методы их расчета. Использование электродинамических сил. Электродинамическая стойкость электрических аппаратов.
- 89. Источники теплоты в электрических аппаратах. Методы анализа. Способы снижения потерь в электрических аппаратах. Теплопередача в окружающее пространство. Критерии подобия. Критериальные уравнения. Расчет коэффициентов теплопередачи. Задачи стационарной и нестационарной теплопроводности в электрических аппаратах. Нестационарный режим нагрева и остывания электрических аппаратов.
- 90. Контакты электрических аппаратов. Модели контактирования. Ом-вольтная характеристика контактов и сваривание контактов. Стационарный нагрев контактов в токопроводе. Одномерная модель неоднородного токопровода с контактами и распределение температур в нем.
- 91. Электрическая дуга отключения. Вольтамперные характеристики стационарной и нестационарной дуги. Распределение потенциалов в дуге.
- 92. Условия гашения электрической дуги в цепи постоянного тока. Шунтирование дуги. Условия гашения дуги переменного тока. Начальная прочность межконтактного промежутка после прохождения тока через нуль. Восстанавливающаяся прочность и восстанавливающееся напряжение. Влияние собственной частоты сети на процессы гашения дуги. Одночастотный и двухчастотный контуры модели сети.
- 93. Электромеханические аппараты автоматики. Основные виды. Характеристики.

- 94. Электрические аппараты распределения энергии низкого напряжения. Основные виды. Характеристики. Методы выбора. Методы испытаний. Тенденции развития.
- 95. Электрические аппараты управления низкого напряжения. Основные виды. Характеристики. Методы выбора. Методы испытаний. Тенденции развития.
- 96. Электрические аппараты высокого напряжения. Основные виды. Виды выключателей высокого напряжения. Особенности конструкций, методов гашения дуги и эксплуатации.
- 97. Реакторы. Конструкции. Использование. Работа реакторов в комплекте с силовыми электронными коммутаторами.
- 98. Ограничители перенапряжений и разрядники. Устройство, характеристики. Особенности эксплуатации.
- 99. Испытания электрических аппаратов высокого напряжения. Статические (силовые электронные и магнитно-полупроводниковые) аппараты. Основные виды аппаратов, их функции и классификация.
- 100. Сравнительный анализ статических и электромеханических аппаратов и области их рационального применения.
- 101. Силовые электронные ключи. Особенности коммутации электронных ключей. Статические и динамические режимы работы ключей. Области безопасной работы и защита электронных ключей.
- 102. Пассивные компоненты и охладители силовых электронных приборов. Влияние повышенной частоты и несинусоидальности напряжения на работу конденсаторов и реакторно-трансформаторного оборудования.
- 103. Системы управления силовыми электронными аппаратами. Обобщенные структурные схемы. Основные функциональные узлы и элементная база.
- 104. Микропроцессоры в управлении электрическими и электронными аппаратами. Структура и функции микропроцессора, микроконтроллера и примеры их применения в различных аппаратах.
- 105. Статические коммутационные аппараты постоянного и переменного токов. Функциональные возможности и области рационального применения. Гибридные коммутационные аппараты.
- 106. Статические регуляторы постоянного тока. Примеры импульсного регулирования параметров электрической энергии. Основные схемы импульсных регуляторов постоянного тока. Тиристорные регуляторы постоянного тока.
- 107. Статические регуляторы переменного тока. Тиристорные регуляторы переменного тока с естественной и искусственной коммутацией. Применение силовых транзисторов в регуляторах переменного тока. Регуляторы реактивной мощности.
- 108. Магнитно-полупроводниковые аппараты. Дроссели насыщения и основные способы подмагничивания. Магнитно-полупроводниковые ключи.
- 109. Феррорезонансный стабилизатор напряжения и тока. Принцип действия, характеристики и области применения.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1.Рекомендуемая литература

5.1.1. Основная литература

- 1. Москаленко В.В. Электрический привод. М.: ИНФРА-М, 2015. 364 с. Инв. № 23574 (20 экз).
- 2. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием. М.: Academia, 2006 . 272 с. Инв. № 18527 (32 экз.).

- 3. Терехов В.М., Осипов О.И. Системы управления электроприводов. М.: Академия, 2008. 304 с. Инв. № 21657 (5 экз.).
- 4. Ильинский Н. Ф.Электропривод: энерго- и ресурсосбережение: учеб. пособие для студ. высш. учеб. заведений / Н.Ф. Ильинский, В. В. Москаленко. М.: Изд. центр «Академия», 2008. 208с. Инв. № 19922 (10 экз.).
- 5. Теория автоматического управления: / Б. И. Коновалов, Ю. М. Лебедев.— Москва: Лань, 2010.— 218 с. <URL:http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=538>
- 6. Теория автоматического управления технологическими системами: / Ю. В. Петраков, О. И. Драчев.— Москва: Машиностроение, 2009.— 336с. <URL:http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=751>
- 7. Иванов-Смоленский А.В. Электрические машины: учеб. для студентов вузов, обучающихся по направлению подгот. дипломир. специалистов "Электротехника, электромеханика и электротехнологии": в 2 т. Т. 1 / А.В. Иванов-Смоленский. 3-е изд., стер. Москва: МЭИ, 2006. 652 с.
- 8. Иванов-Смоленский А.В. Электрические машины: учеб. для студентов вузов, обучающихся по направлению подгот. дипломир. специалистов "Электротехника, электромеханика и электротехнологии": в 2 т. Т. / А.В. Иванов-Смоленский. 2-е изд., перераб. и доп. М.: Издательство МЭИ, 2004. 652 с.
- 9. Иванов-Смоленский А.В. Электрические машины: учеб. для студентов вузов, обучающихся по направлению подгот. дипломир. специалистов "Электротехника, электромеханика и электротехнологии": в 2 т. Т. 2 / А.В. Иванов-Смоленский. 2-е изд., перераб. и доп. М.: Высшая школа, 2004. 532 с.
- 10. Иванов-Смоленский, Алексей Владимирович. Электромагнитные силы и преобразование энергии в электрических машинах : Учеб. пособие для вузов по специальности "Электромеханика" / А. В. Иванов-Смоленский .— М. : Высшая школа, 1989 .— 311 с. : ил. ; 21 см .— допущено в качестве учебного пособия .— ISBN 5-06-000103-2 : 0.95. (инв. №: 8531 6 экз.; инв. №: 1038319 1 экз.).
- 11. Вольдек А.И. Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы: учеб. для студентов вузов, обучающихся по направлению подгот. "Электротехника, электромеханика и электротехнологии" и "Электроэнергетика" / А.И. Вольдек, В.В. Попов. Москва; Санкт-Петербург; Нижний Новгород [и др.]: Питер, 2008. 320 с.
- 12. Вольдек А.И. Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы: учебник для студентов вузов, обучающихся по направлению подгот. "Электротехника, электромеханика и электротехнологии" и "Электроэнергетика" / А.И. Вольдек, В.В. Попов. Москва; Санкт-Петербург; Нижний Новгород [и др.]: Питер, 2007. 320 с.
- 13. Вольдек А.И. Электрические машины. Машины переменного тока: учеб. для студентов вузов, обучающихся по направлению подгот. "Электротехника, электромеханика и электротехнологии" и "Электроэнергетика" / А.И. Вольдек, В.В. Попов. Москва; Санкт-Петербург; Нижний Новгород [и др.]: Питер, 2008. 350 с.
- 14. Вольдек А.И. Электрические машины. Машины переменного тока: учеб. для студентов вузов, обучающихся по направлению подгот. "Электротехника, электромеханика и электротехнологии" и "Электроэнергетика" / А.И. Вольдек, В.В. Попов. Москва; Санкт-Петербург; Нижний Новгород [и др.]: Питер, 2007. 350 с.
- 15. Копылов И.П. Электрические машины: учеб. для студентов электроэнергет. специальностей вузов / И.П. Копылов. Изд. 6-е, стер. Москва: Высшая школа, 2009. 607 с.
- 16. Копылов И.П. Электрические машины: учебник для студентов электромех. и электроэнергет. специальностей вузов / И.П. Копылов. Изд. 5-е, стер. М.: Высшая школа, 2006. 607 с.
- 17. Тихомиров, Павел Михайлович. Расчет трансформаторов: учебное пособие для студентов электротехнических и электромеханических специальностей вузов / П. М. Тихомиров.— Изд. 7-е. Москва: URSS: ЛЕНАНД, 2014.— 527 с.

- 18. Тихомиров, Павел Михайлович. Расчет трансформаторов: учеб. пособие для студентов электротехн. и электромех. специальностей вузов / П. М. Тихомиров. Изд. 6-е перераб. и доп. Минск: Высшая школа A, 2011. 528 с.
- 19. Проектирование электрических машин: учеб. для студентов электромехан. и электроэнергет. специальностей вузов / [И. П. Копылов, Б. К. Клоков, В. П. Морозкин, Б. Ф. Токарев]; под ред. И. П. Копылова .— 4-е изд., перераб. и доп. Москва: Юрайт, 2011 .— 767 с.
- 20. Гольдберг, Оскар Давидович. Электромеханика : учебник для студентов вузов, обучающихся по направлению подготовки 140200 "Электроэнергетика" / О. Д. Гольдберг, С. П. Хелемская ; под ред. О. Д. Гольдберга .— 2-е изд., испр. Москва : Академия, 2010 .— 512 с.
- 21. Костенко, М. П. Электрические машины. 2. Машины переменного тока / М.П. Костенко ; Л.М. Пиотровский .— Изд. 3-е, перераб. и доп. Ленинград : Энергия, 1973 .— 648 с. <URL:http://biblioclub.ru/index.php?page=book&id=450046>.
- 22. Костенко, М. П. Электрические машины. 1. Машины постоянного тока. Трансформаторы / М.П. Костенко; Л.М. Пиотровский.— Изд. 3-е, перераб. и доп. Ленинград: Энергия, 1972.— 544 с. <URL:http://biblioclub.ru/index.php?page=book&id=450047>.
- 23. Щеглов, Н. В. Современные зиды изоляции : учебное пособие. 4. Изоляция силовых трансформаторов / Н.В. Щеглов .— Новосибирск : НГТУ, 2011 .— 88 с. ISBN 978-5-7782-1841-3 .— <URL:http://biblioclub.ru/index.php?page=book&id=228782>.
- 24. Щеглов, Н. В. Современные виды изоляции : учебное пособие. 5. Изоляция высоковольтных электрических машин / Н.В. Щеглов .— Новосибирск : НГТУ, 2013 .— 87 с. ISBN 978-5-7782-2166-6 .— <URL:http://biblioclub.ru/index.php?page=book&id=228783>.
- 25. Шаншуров, Г. А. Специальные электрические машины : оценка качества обмоток машин переменного тока на стадии проектирования : учебное пособие / Г.А. Шаншуров ; Т.В. Дружинина ; А.Ю. Будникова .— Новосибирск : НГТУ, 2015 .— 40 с. ISBN 978-5-7782-2667-8 .— <URL:http://biblioclub.ru/index.php?page=book&id=438452>.
- 26. Рихтер, Р. Электрические машины. Машины постоянного тока / Р. Рихтер. М.|Л.: ОНТИ НКТП СССР, 1935. 602 с. ISBN 978-5-4458-0562-5.— <URL:http://biblioclub.ru/index.php?page=book&id=117331>.
- 27. Рихтер, Р. Электрические машины / Р. Рихтер. М.|Л.: ОНТИ НКТП СССР, 1936. 689 с. ISBN 978-5-4458-0583-0. <URL:http://biblioclub.ru/index.php?page=book&id=117332>.
- 28. Рихтер, Р. Электрические машины / Р. Рихтер. М.|Л.: ОНТИ НКТП СССР, 1935. 294 с. ISBN 978-5-4458-0584-7. <URL:http://biblioclub.ru/index.php?page=book&id=117333>.
- 29. Рихтер, Р. Электрические машины / Р. Рихтер. М.|Л.: Государственное объединенное научно-техническое издательство. Редакция энергетической литературы, 1939. 472 с. ISBN 978-5-4458-4076-3. <URL:http://biblioclub.ru/index.php?page=book&id=210832>.
- 30. Рихтер, Р. Электрические машины Регулировочные агрегаты / Р. Рихтер. М.|Л.: Гос. энергетическое изд-во, 1961. 633 с. ISBN 978-5-4458-4077-0.— <URL:http://biblioclub.ru/index.php?page=book&id=210833>.
- 31. Ермолин, Н. П. Как рассчитать маломощный силовой трансформатор / Н.П. Ермолин .— М.|Л.: Гос. энергетическое изд-во, 1961 .— 50 с. (Библиотека электромонтера. Выпуск 33) .— <URL:http://biblioclub.ru/index.php?page=book&id=117934>.
- 32. Трамбицкий, А. В. Расчет трансформаторов / А.В. Трамбицкий .— Ленинград | Москва : ГОНТИ НКТП СССР. Главная редакция энергетической литературы, 1938 .— 382 с. ISBN 978-5-4458-4108-1 .— <URL:http://biblioclub.ru/index.php?page=book&id=212699>.
- 33. Сапожников, А. В. Конструирование трансформаторов / А.В. Сапожников .— 2-е изд., перераб. М.|Л.: Гос. энергетическое изд-во, 1959 .— 361 с. ISBN 978-5-4458-4745-8 .— <URL:http://biblioclub.ru/index.php?page=book&id=220872>.

- 34. Михайлов, В. А. Расчет трансформаторов и дросселей / В.А. Михайлов .— М.|Л.: Гос. энергетическое изд-во, 1949 .— 88 с. (Массовая радиобиблиотека. Выпуск 31) .— ISBN 978-5-4458-5863-8 .— <URL:http://biblioclub.ru/index.php?page=book&id=224472>.
- 35. Кризе, С. Н. Расчет маломощных силовых трансформаторов и дросселей фильтров : пособие / С.Н. Кризе .— М.|Л. : Гос. энергетическое изд-во, 1950 .— 45 с. (Массовая радиобиблиотека. Выпуск 60) .— <URL:http://biblioclub.ru/index.php?page=book&id=255581>.
- 36. Еремеев, А. И. Обмотки электрических машин / А.И. Еремеев .— 2-е изд., перераб. М.|Л. : Гос. энергетическое изд-во, 1940 .— 481 с. ISBN 978-5-4460-6977-4 .— <URL:http://biblioclub.ru/index.php?page=book&id=100718>.
- 37. Кучера, Я. Обмотки электрических вращательных машин / Я. Кучера ; Й. Гапл .— Прага : Издательство Чехословацкой Академии Наук, 1963 .— 971 с. ISBN 978-5-4458-4099-2 .— <URL:http://biblioclub.ru/index.php?page=book&id=212698>.
- 38. Беспалов В.Я. Электрические машины: учеб. пособие для студентов вузов, обучающихся по направлению подгот. 140600 "Электротехника, электромеханика и электротехнологии" / В.Я. Беспалов, Н.Ф. Котеленец. Москва: Academia, 2006. 320 с.
- 39. Гольдберг, Оскар Давидович. Надежность электрических машин: учеб. для студентов вузов по направлению "Электротехника, электромеханика и электротехнологии", по специальности "Электромеханика" / О. Д. Гольдберг, С. П. Хелемская; под ред. О. Д. Гольдберга .— Москва: Академия, 2010 .— 288 с.: ил.; 22 см .— (Высшее профессиональное образование, Электротехника) .— Библиогр.: с. 285 (13 назв.). Допущено в качестве учебника .— ISBN 978-5-7697557392.
- 40. Гольдберг, Оскар Давидович. Проектирование электрических машин: Учебник для студентов вузов, обуч. по напр. электротехника, электромеханика м энергетика / О.Д. Гольдберг, Я.С. Гурин, И.С. Свириденко; Под ред. О.Д. Гольдберга .— 2-е изд., перераб. М.: Высшая школа, 2001 .— 427 с.: рис. Библиогр.: с. 428 (8 назв.). допущено в качестве учебника .— ISBN 5-06-003842-4: 75.00.
- 41. Переходные процессы в электрических машинах и аппаратах и вопросы их проектирования : Учеб. пособие для студентов вузов, обучающихся по специальностям "Электромеханика", "Электр. и электрон. аппараты" / О.Д. Гольдберг, О.Б. Буль, И.С. Свириденко, С.П. Хелемская; Под ред. О.Д. Гольдберга .— М. : Высшая школа, 2001 .— 512 с. : ил. ; 21 см .— Авт. указаны на обороте тит. л. Библиогр.: с. 512 (30 назв.). ISBN 5-06-003844-0 : 90.00.
- 42. Нейман, Л. Р. Теоретические основы электротехники / Л.Р. Нейман; К.С. Демирчан. Ленинград: Энергия, 1967. 522 с. <URL:http://biblioclub.ru/index.php?page=book&id=447944>.
- 43. Буль, Болеслав Казимирович. Основы теории и расчета магнитных цепей / Б. К. Буль .— Москва ; Ленинград : Энергия, 1964 .— 464 с.
- 44. Основы теории электрических аппаратов : учеб. для вузов по специальности "Электр. аппараты" / И. С. Таев, Б. К. Буль, А. Г. Годжелло и др. ; под ред. И. С. Таева .— Москва : Высшая школа, 1987 .— 352 с. : ил. ; 21 см .— Авт. указаны на обороте тит. л .— Библиогр.: с. 346-347 (35 назв.) .— Предм. указ.: с. 347-349. допущено в качестве учебника .— 1.10.
- 45. Буль, Олег Болеславович. Методы расчета магнитных систем электрических аппаратов. Программа ANSYS: учеб. пособие для студентов вузов, обучающихся по специальности "Электр. и электрон. аппараты" направления подгот. дипломир. специалистов "Электротехника, электромеханика и электротехнологии" / О. Б. Буль. Москва: Академия, 2006. 288 с.; 22 см. (Высшее профессиональное образование, Электротехника). Библиогр.: с. 281-286. Допущено в качестве учебного пособия. ISBN 5-7695-2064-7. (инв. №: 19503 20 экз.; инв. №: 1141510 − 1 экз.).
- 46. Аполлонский, С. М. Электрические аппараты управления и автоматики / С. М. Аполлонский. Москва: Лань, 2017. ISBN 978-5-8114-2605-8. <URL:https://e.lanbook.com/book/96241>.

- 47. Попов, Е. В. Устройство и эксплуатация электрических аппаратов : конспект лекций. 1. Коммутационные электрические аппараты / Е.В. Попов .— Москва : Альтаир|МГАВТ, 2015 .— 49 с. <URL:http://biblioclub.ru/index.php?page=book&id=430567>.
- 48. Электрические и электронные аппараты: учеб. для студентов вузов, обучающихся по направлению подгот. "Электротехника, электромеханика и электротехнологии": в 2 т. Т. 1. Электромеханические аппараты / [Е. Г. Акимов, Г. С. Белкин, А. П. Бурман и др.]; под ред. А. Г. Годжелло, Ю. К. Розанова .— Москва: Академия, 2010 .— 344 с.: ил.; 22 см. (Высшее профессиональное образование, Электротехника) .— Авт. указаны в предисл. Тираж 2000 экз. Библиогр.: с. 336-338 (34 назв.). Допущено в качестве учебника .— ISBN 978-5-7695-6253-2.
- 49. Электрические и электронные аппараты: учеб. для студентов вузов, обучающихся по направлению подгот. "Электротехника, электромеханика и электротехнологии": в 2 т. Т. 2. Силовые электронные аппараты / [А. П. Бурман, А. А. Кваснюк, Ю. С. Коробков и др.]; под ред. Ю. К. Розанова. Москва: Академия, 2010. 315 с.: ил.; 22 см. (Высшее профессиональное образование, Электротехника). Тираж 2000 экз. Авт. указаны в предисл. Библиогр.: с. 310-311 (31 назв.). Допущено в качестве учебника. ISBN 978-5-7695-6255-6.

5.1.2. Дополнительная литература

- 1. Онищенко Г.Б. Теория электропривода. М.: ИНФРА-М, 2017. 294с. Инв. № 1172274 (1 экз.).
- 2. Попков О.З. Основы преобразовательной техники. М.: МЭИ, 2007. 200 с. Инв. № 1148773 (1 экз.).
- 3. Браславский И.Я. Энергосберегающий асинхронный электропривод / И.Я. Браславский, З. Ш. Ишматов, В. Н. Поляков; под ред. И.Я. Браславского. М.: Академия, 2004. 256 с. Инв. № 17211 (10 экз.).
- 4. Белов М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов / М. П. Белов, В. А. Новиков, Л. Н. Рассудов. М.: Академия, 2004 . 576 с. Инв. № 16687.
- 5. Инжиниринг электроприводов и систем автоматизации / М. П. Белов, О. И. Зементов, А. Е. Козярук и др.; под ред. В. А. Новикова, Л. М. Чернигова. М.: Academia, 2006. 368 с. Инв. № 18942 (48 экз.).
- 6. Герман-Галкин С.Г. Виртуальные лаборатории полупроводниковых систем в среде Matlab-Simulink / М.: Лань, 2013 . 443 с.
- <URL:http://e.lanbook.com/books/element.php?pl1 id=36998>
- 7. Шрейнер Р.Т. Системы подчиненного регулирования электроприводов / Р. Т. Шрейнер; Рос. гос. проф.-пед. ун-т, Урал. отд-ние Рос. акад. образования, Акад. проф. образования. Екатеринбург: РГППУ, 2008. 279 с. Инв. № 20395 (8 экз.).
- 8. Лезнов Б.С. Методика оценки эффективности применения регулируемого электропривода в водопроводных и канализационных насосных установках. М.: Машиностроение, 2011. <URL: http://e.lanbook.com/books/element.php?pll_cid=25&pll_id=2015.
- 9. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. М.: Горячая линия Телеком, 2009. 608 с. Инв. № 1152988, 1152989, 1154398 (3 экз.).
- 10. Интеллектуальные роботы / И. А. Каляев, В. М. Лохин, И. М. Макаров и др.; под общ. ред. Е. И. Юревича. М.: Машиностроение, 2007. 360 с. Инв. № 19487 (10 экз.). <URL:http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=769>
- 11. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты / Р. Т. Шрейнер; Рос. акад. наук. Урал. отд-ние. Екатеринбург: УРО РАН, 2000 . 654 с. Инв. № 13204 (41 экз.).

- 12. Ефимов А. А., Шрейнер Р.Т. Активные преобразователи в регулируемых электроприводах переменного тока / Под ред. Р.Т. Шрейнера; Новоурал. гос. технол. ин-т. Новоуральск: НГТИ, 2001. 250 с. Инв. № 1115788, 1115789 (2 экз.).
- 13. Поляков В. Н., Шрейнер Р.Т. Экстремальное управление электрическими двигателями / под ред. Р. Т. Шрейнера; Урал. гос. техн. ун-т УПИ, Рос. гос. проф.-пед. ун-т. Екатеринбург: УГТУ-УПИ, 2006. 420 с. Инв. № 19125 (6 экз.).
- 14. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие для студентов вузов, обучающихся по специальности 140604 "Электропривод и автоматика пром. установок и технол. комплексов" направления подгот. 140600 / Р. Т. Шрейнер, А. В. Костылев, В. К. Кривовяз, С. И. Шилин; под ред. Р. Т. Шрейнера; Рос. гос. проф.-пед. ун-т [и др.]. Екатеринбург: РГППУ, 2008. 361 с. Инв. № 20394 (10 экз.).
- 15. Вейнгер А. М. Регулируемый синхронный электропривод. М.: Энергоатомиздат, 1985. 223 с. Инв. № 6017 (6 экз.).
- 16. Соснин О.М. Основы автоматизации технологических процессов и производств / О. М. Соснин. М.: Академия, 2007. 240 с. Инв. № 19573 (10 экз.).
- 17. Технические средства автоматизации / Б. В. Шандров, А. Д. Чудаков. М.: Академия, 2007. 368 с. Инв. № 19466 (12 экз).
- 18. Гудвин Г. К. Проектирование систем управления / Г. К. Гудвин, С. Ф. Гребе, М. Э. Сальгадо; пер. с англ. А. М. Епанешникова. М.: БИНОМ. Лаборатория знаний, 2004. 911 с. Инв. № 1129210, 1129211, 1129212 (3 экз.)
- 19. Дорф Р. Современные системы управления / Р. Дорф, Р. Бишоп; Пер. с англ. Б. И. Копылова.— М.: Лаборатория Базовых Знаний: ЮНИМЕДИАСТАЙЛ, 2002.— 832 с. Инв. № 1125653, 1140358, 1125654 (3 экз.)
- 20. Беспалов В.Я. Электрические малины: учеб. пособие для студентов вузов, обучающихся по направлению подгот. 140600 "Электротехника, электромеханика и электротехнологии" / В.Я. Беспалов, Н.Ф. Котеленец. Москва: Academia, 2006. 320 с.
- 21. Парамонова, В. Электрические машины : сборник задач / В. Парамонова .— Москва : Альтаир|МГАВТ, 2014 .— 72 с. — <URL:http://biblioclub.ru/index.php?page=book&id=430516>.
- 22. Лотоцкий, К. В. Электрические машины и основы электропривода / К.В. Лотоцкий .— Москва : Издательство "Колос", 1964 .— 495 с. ISBN 978-5-4458-4514-0 .— <URL:http://biblioclub.ru/index.php?page=book&id=213828>.
- 23. Жерве, Георгий Константинович. Обмотки электрических машин: основы устройства, теории и работы / Г. К. Жерве .— Ленинград: Энергоатомиздат. Ленинградское отделение, 1989 .— 398, [1] с.: ил.; 22 см. Библиогр.: с. 394-396 (43 назв.) .— ISBN 5-283-04458-0 : 1,90.
- 24. Жерве, Георгий Константинович. Промышленные испытания электрических машин / Г. К. Жерве .— 4-е изд., сокр. и перераб. Л. : Энергоатомиздат, 1984 .— 407 с. без грифа.
- 25. Гольдберг, Оскар Давидович. Испытания электрических машин: Учебник для студентов вузов / О.Д. Гольдберг. 2-е изд., испр. М.: Высшая школа, 2000. 255 с.: ил. Библиогр.: с. 252 (5 назв.). рекомендовано в качестве учебника. ISBN 5-06-003840-8: 39.00.
- 26. Гольдберг, Оскар Давидович. Электромеханика: учебник для студентов вузов, обучающихся по направлению подготовки 140200 "Электроэнергетика" / О. Д. Гольдберг, С. П. Хелемская; под ред. О. Д. Гольдберга.— 2-е изд., испр. Москва: Академия, 2010.— 512 с.: ил. (Высшее профессиональное образование. Электротехника).— Библиогр.: с. 501.— ISBN 978-5-7695-6176-4.
- 27. Котеленец, Николай Федорович. Испытания и надежность электрических машин: Учеб. пособие для вузов. М.: Высшая школа, 1988. 232с. допущено в качестве учебного пособия. ISBN 5-06-001233-6: 0.85.

- 28. Котеленец, Н. Ф. Испытания, эксплуатация и ремонт электрических машин: Учебник для студентов вузов, обучающихся по специальности "Электромеханика" направления подгот. дипломир. специалистов "Электротехника, электромеханика и электротехнологии" / Н. Ф. Котеленец, Н. А. Акимова, М. В. Антонов; Под ред. Н. Ф. Котеленца .— М.: Академия, 2003 .— 384 с.: ил.; 21 см. (Высшее профессиональное образование) .— Библиогр.: с. 379-380 (27 назв.). ISBN 5-7695-1281-4: 155.15.
- 29. Муравьев, В. М. Электрические машины : сборник тестовых задач / В.М. Муравьев ; М.С. Сандлер .— Москва : Альтаир|МГАВТ, 2010 .— 40 с. <URL:http://biblioclub.ru/index.php?page=book&id=430513>.
- 30. Электрические машины : лабораторный практикум .— Ставрополь : СКФУ, 2014 .— 134 с. <URL:http://biblioclub.ru/index.php?page=book&id=457234>.
- 31. Дробов, А. В. Электрические машины : учебное пособие / А.В. Дробов ; В.Н. Галушко .— Минск : РИПО, 2015 .— 292 с. ISBN 978-985-503-540-5 .— <URL:http://biblioclub.ru/index.php?page=book&id=463598>.
- 32. Дробов, А. В. Электрические машины : практикум : учебное пособие / А.В. Дробов ; В.Н. Галушко .— Минск : РУППО, 2017 .— 112 с. ISBN 978-985-503-650-1 .— <URL:http://biblioclub.ru/index.php?page=book&id=463599>.
- 33. Трансформаторы и электрические машины : лабораторный практикум / В.В. Сотников .— Йошкар-Ола : МарГТУ, 2011 .— 88 с. <URL:http://biblioclub.ru/index.php?page=book&id=477299>.
- 34. Епифанов, Алексей Павлович. Электрические машины : учебник / А. П. Епифанов .— Москва : Лань, 2017 .— 272 с. : ил. ; 22 см .— Библиогр.: с. 260-261 (33 назв.). ISBN 978-5-8114-2637-9 .— <URL:https://e.lanbook.com/book/95139>.
- 35. Епифанов, А.П. Электрические машины: Москва: Лань, 2006. 272 с.: ил. (Учебники для вузов. Специальная литература). Допущено Учебно-методическим объединением вузов по агроинженерному образованию в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 110302 «Электрификация и автоматизация сельского хозяйства». ISBN 5-8114-0669-X: 495-00. <URL:http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=591>.
- 36. Ванурин, В. Н. Электрические машины / Ванурин В.Н. Москва : Лань", 2016 .— Рекомендовано УМО вузов РФ по агроинженерному образованию в качестве учебника для студентов, осваивающих образовательные программы бакалавриата по направлению подготовки «Агроинженерия» .— ISBN 978-5-8114-2015-5 .— <URL:http://e.lanbook.com/books/element.php?pl1 id=72974>.
- 37. Электрические машины : машины постоянного тока : учебное пособие / А.Ф. Шевченко .— Новосибирск : HГТУ, 2015 .— 68 с. ISBN 978-5-7782-2678-4 .— <URL:http://biblioclub.ru/index.php?page=book&id=438311>.
- 38. Кобозев, В. А. Электрические машины : учебное пособие. 1. Машины постоянного тока. Трансформаторы / В.А. Кобозев .— Ставрополь : Ставропольский государственный аграрный университет, 2015 .— 200 с. <URL:http://biblioclub.ru/index.php?page=book&id=438677>.
- 39. Кобозев, В. А. Электрические машины : учебное пособие. 2. Электрические машины переменного тока / В.А. Кобозев .— Ставрополь : Ставропольский государственный аграрный университет, 2015 .— 208 с. <URL:http://biblioclub.ru/index.php?page=book&id=438678>.
- 40. Игнатович, В. М. Электрические машины и трансформаторы : учебное пособие / В.М. Игнатович ; Ш.С. Ройз .— Томск : Издательство Томского политехнического университета, 2013 .— 182 с. <URL:http://biblioclub.ru/index.php?page=book&id=442095>.
- 41. Кацман М.М. Электрические машины: учеб. для студентов учреждений сред. проф. образования, обучающихся по специальности "Электротехника" / М.М. Кацман. 5-е изд., перераб. и доп. М.: Высшая школа, 2003. 496 с.
- 42. Осин И.Л. Синхронные электрические двигатели малой мощности: учеб. пособие для студентов вузов, обучающихся по специальности 140601 "Электромеханика",

- направления подгот. дипломир. специалистов 140600 "Электротехника, электромеханика и электротехнологии" / И.Л. Осин. Москва: МЭИ, 2006. 216 с.
- 43. Осин И.Л. Электрические машины автоматических устройств: Учеб. пособие для студентов вузов, обучающихся по специальности "Электромеханика" направления подгот. дипломир. специалистов "Электротехника, электромеханика и электротехнологии" / И.Л. Осин, Ф.М. Юферов. М.: МЭИ, 2003. 424 с.
- 44. Справочник по электрическим машинам : В 2 т. Т. 1 / И.П. Копылова и др. / Под общ. ред. И.П. Копылова, Б.К. Клокова .— М. : Энергоатомиздат, 1988 .— 455 с.
- 45. Проектирование электрических машин: Учеб. пособие для вузов по спец. "Электротехника": В 2 кн. Кн. 2 / И.П. Копылов, Б.К. Клоков, В.П. Морозкин, Б.Ф. Токарев; Под ред. И.П. Копылова.— 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1993.— 382 с.
- 46. Асинхронные двигатели общего назначения / Е. П. Бойко, Ю. В. Гаинцев, Ю. М. Ковалев [и др.]; под ред. В. М. Петрова, А. Э. Кравчика .— Москва: Энергия, 1980 .— 488 с.
- 47. Алексеев, Александр Емельянович. Конструкция электрических машин: [учебное пособие для энергетических и электротехнических вузов и факультетов] / А. Е. Алексеев .— 2-е изд., перераб. Москва; Ленинград: Госэнергоиздат, 1958.— 427 с.
- 48. Электротехнический справочник : в 4 т. Т. 1. Общие вопросы. Электротехнические материалы / под общ. ред. В. Г. Герасимова, А. Ф. Дьякова, Н. Ф. Ильинского [и др.] .— 10-е изд., стер. Москва : МЭИ, 2007 .— 440 с.
- 49. Электротехнический справочник : в 4 т. Т. 2 / под общ. ред. В. Г. Герасимова, А. Ф. Дьякова, Н. Ф. Ильинского [и др.] .— 10-е изд., стер. Москва : МЭИ, 2007 .— 518 с.
- 50. Электротехнический справочник : в 4 т. Т. 3. Производство, передача и распределение электрической энергии / под общ. ред. В. Г. Герасимова [и др.] .— 9-е изд., стер. Москва : МЭИ, 2004 .— 964 с.
- 51. Электротехнический справочник : в 4 т. Т. 4. Использование электрической энергии / под общ. ред. В. Г. Герасимова [и др.] .— 9-е изд., стер. Москва : МЭИ, 2004 .— 696 с.
- 52. Буль, Олег Болеславович. Методы расчета магнитных систем электрических аппаратов. Магнитные цепи, поля и программа *FEMM*: учеб. пособие для студентов вузов, обучающихся по специальности "Электр. и электрон. аппараты" направления подгот. дипломир. специалистов "Электротехника, электромеханика и электротехнология" / О. Б. Буль. М.: Академия, 2005. 336 с.
- 53. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. М.: Горячая линия Телеком, 2009.
- 54. К. Клаассен. Основы измерений. Датчики и электронные приборы. Издательство: «Интеллект», 2008. 352 С.
- 55. К.Б. Клаасен. Основы измерений. Электронные методы и приборы в измерительной технике. М.: Постмаркет. 2000. 352 с.

5.2. Методические разработки

Не используются

5.3.Программное обеспечение

- 1. Пакет Microsoft Office.
- 2. Система инженерного программирования Matlab.
- 3. Система инженерного программирования Scilab.
- 4. Пакет сбора и обработки данных LabView
- 5. FEMM 4.2 (http://www.femm.info/wiki/License)
- 6. Mathcad
- 7. Comsol Multiphysics

5.4. Базы данных, информационно-справочные и поисковые системы

- 1. Библиотека УрФУ http://lib.urfu.ru
- 2. Портал информационно-образовательных ресурсов УрФУ http://study.urfu.ru
- 3. ЭБС Университетская библиотека онлайн http://www.biblioclub.ru/
- 4. Web of Science http://apps.webofknowledge.com/
- 5. Scopus http://www.scopus.com/

5.5. Электронные образовательные ресурсы

Не используются

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием

Лекции читаются в аудиториях, оснащенных мультимедийным оборудованием, с доступом к сети «Интернет». Для самостоятельной работы используются аудитории, оснащенные персональными компьютерами по числу обучающихся с подключением к сети «Интернет».