Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ

Директор по образовательной деятельности

С.Т. Князев

Я 2021 г.

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля M.1.7

Модуль Приложения искусственного интеллекта

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
Прикладной искусственный интеллект (Practical	09.04.02
Artificial Intelligence)	
Направление подготовки	Код направления и уровня подготовки
Информационные системы и технологии	09.04.02

Области образования, в рамках которых реализуется модуль образовательной программы по СУОС $\mathsf{Уp}\Phi\mathsf{У}$:

№ п/п	Перечень областей образования, для которых разработан СУОС УрФУ	Уровень подготовки
1.	Инженерное дело, технологии и технические науки	магистратура

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ронкин Михаил	кандидат	доцент	Учебно-научный центр
	Владимирович	технических		"Информационная
		наук, нет		безопасность", ИРИТ-РТФ,
				УрФУ

Рекомендовано учебно-методическим советом института радиоэлектроники и информационных технологий - РтФ

Протокол № 7 от 11 октября 2021 г.

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ ПРИЛОЖЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

1.1. Аннотация содержания модуля

Модуль содержит следующие дисциплины: «Анализ временных рядов» и «Компьютерное зрение».

Целью дисциплины «Анализ временных рядов» является формирование умений по применению научно-обоснованной комплексной методологии анализа и прогнозирования временных рядов на основе методов статистического анализа, моделирования и прогнозирования информации, с учетом отечественного и зарубежного опыта по использованию подобных подходов на практике.

В рамках дисциплины «Компьютерное зрение» студенты узнают, как использовать глубокие нейронные сети для классификации изображений, сегментации и обнаружения объектов; Рассмотрят особый тип архитектуры нейронной сети, пригодный для анализа изображений сверточная нейронная сеть. Обучающимся предоставляется возможность получить комплексное всестороннее представление о предварительно обученных нейронных сетях для анализа изображений.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах и часах
1.	Анализ временных рядов	6 з.е./216 ч.
2.	Компьютерное зрение	6 з.е./216 ч.
	ИТОГО по модулю:	12 з.е./432 ч.

1.3. Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	нет
Постреквизиты и корреквизиты	нет
модуля	

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень	Код и	Индикаторы	Таолица 2
_		_	Планируемые результаты
дисциплин	наименование	достижения	обучения
модуля	компетенции	компетенции	
1	2	3	4
Анализ	ОПК-8. Способен	ОПК-8.1. Применяет	ОПК-8.1. 3-1. Знает
временных	разрабатывать	инструментальные среды,	инструментальные среды,
рядов	алгоритмы и	программно-технические	программно-технические
	программные средства	платформы для решения	платформы для решения
	для решения задач в	задач в области создания и	
	области создания и	применения	ОПК-8.1. У-1. Умеет применять
	применения	искусственного	инструментальные среды,
	искусственного	интеллекта	программно-технические
	интеллекта		платформы для решения
			профессиональных задач
	ПК-1. Способен	ПК-1.1. Исследует и	ПК-1.1. 3-1. Знает архитектурные
	исследовать и	разрабатывает	принципы построения систем
	разрабатывать	архитектуры систем	искусственного интеллекта,
	архитектуры систем	искусственного	методы декомпозиции основных
	искусственного		подсистем (компонентов) и
	интеллекта для	предметных областей	реализации их взаимодействия
	различных		на основе методологии
	предметных областей		предметно-ориентированного
	на основе комплексов		проектирования
	методов и		ПК-1.1. У-1. Умеет выстраивать
	инструментальных		архитектуру системы
	средств систем		искусственного интеллекта,
	искусственного		осуществлять декомпозицию
	интеллекта		основных подсистем
			(компонентов) и реализации их
			взаимодействия на основе
			методологии предметно-
			ориентированного
			проектирования
Компьютерное	ОПК-8. Способен	ОПК-8.1. Применяет	ОПК-8.1. 3-1. Знает
зрение	разрабатывать	инструментальные среды,	инструментальные среды,
	алгоритмы и	программно-технические	программно-технические
		платформы для решения	платформы для решения
	для решения задач в	задач в области создания и	
	области создания и	применения	ОПК-8.1. У-1. Умеет применять
	применения	искусственного	инструментальные среды,
	искусственного	интеллекта	программно-технические
	интеллекта		платформы для решения
	OHIC 0.2	OFFIC O. D. I. D.	профессиональных задач
	ОПК-8.2.	ОПК-8.2. 3-1. Знает	ОПК-8.2. Разрабатывает
	Разрабатывает	принципы разработки	оригинальные программные
	оригинальные	оригинальных	средства для решения задач в
		программных средств для	области создания и применения
	для решения задач в	решения	искусственного интеллекта
	области создания и	профессиональных задач	
	применения	ОПК-8.2. У-1. Умеет	
	искусственного	разрабатывать	
	интеллекта	оригинальные	
		программные средства для	

	решения задач в области	
	создания и применения	
	искусственного	
	интеллекта	
ПК-7. Способен	ПК-7.1. Руководит	ПК-7.1. 3-1. Знает принципы
руководить проектами	проектами в области	построения систем
по созданию,	сквозной цифровой	компьютерного зрения, методы и
внедрению и	субтехнологии	подходы к планированию и
использованию одной	«Компьютерное зрение»	реализации проектов по
или нескольких		созданию систем искусственного
сквозных цифровых		интеллекта на основе сквозной
субтехнологий		цифровой субтехнологии
искусственного		«Компьютерное зрение»
интеллекта в		ПК-7.1. У-1. Умеет руководить
прикладных областях		проектами по созданию,
		внедрению и поддержке систем
		искусственного интеллекта на
		основе сквозной цифровой
		субтехнологии «Компьютерное
		зрение»
		·

1.5. Форма обучения

Обучение по дисциплинам модуля может осуществляться в очной форме

2. СОДЕРЖАНИЕ И ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ ДИСЦИПЛИН МОДУЛЯ

ПРОГРАММА МОДУЛЯПРИЛОЖЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

РАЗДЕЛ 2. СОДЕРЖАНИЕ И ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ ДИСЦИПЛИН МОДУЛЯ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ 1

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ронкин Михаил	кандидат	Доцент	Учебно-научный центр
	Владимирович	технических наук		"Информационная
				безопасность",
				ИРИТ⁻РТФ, УрФУ

Рекомендовано учебно-методическим советом института радиоэлектроники и информационных технологий - РтФ

Протокол № 7 от 11 октября 2021 г.

2. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ 1 АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

2.1. Технологии обучения, используемые при изучении дисциплины модуля

- Традиционная (репродуктивная) технология;
- Смешанная модель обучения с использованием онлайн-курса;
- Исключительно электронного обучения с использованием онлайн-курса.

2.2. Содержание дисциплины 1

Таблица 1

Код раздела , темы	Раздел, тема дисциплины*	Содержание	
1	Особенности предмета анализа временных рядов.	Особенности предмета анализ временных рядов; Обзор некоторых задач анализа временных рядов; Типы временных рядов; Особенности моделей временных рядов; Типы задач анализа временных рядов; Особенности использования подходов аналитической статистики и машинного обучения при анализе временных рядов.	
2	Статистический анализ временных рядов.	Основные статистические характеристики временных рядов. Анализ остатков и его особенности. Тесты на стапионарность.	
3	Авторегрессионный анализ временных рядов	Авторегрессионная модель временного ряда; Модель скользящего среднего временного ряда; Специфика использования модели авторегрессии-скользящего среднего (АРСС); Модель интегрированной АРСС и ее использование в анализе временных рядов; Модель сезонной интегрированной АРСС и ее использование в анализе временных рядов; Особенности выбора порядка моделей АРСС и других; Обзор других моделей на основе АРСС; Примеры решения задач анализа временных рядов с использованием АРСС.	
4	Извлечение, выбор и обработка признаков из данных в анализе временных рядов.	Особенности признаков в анализе временных рядов. Примеры признаков. Особенности проведение разведывательного анализа данных; Некоторые методы представления признаков временных рядов; Обзор методов извлечения признаков из временных рядов;	

		M
		Методы обработки признаков временных рядов;
		Методы отбора признаков временных рядов.
		Особенности временных рядов с точки зрения данных
		для использования методов машинного обучения;
		Обзор некоторых задач анализа временных рядов с их
		решениями методами машинного обучения;
	Особенности использования	Метрики временных рядов;
_	методов машинного зрения	Обзор задач кластеризации временных рядов;
5	при анализе временных рядов	Методы поиска аномалий во временных рядах;
		Особенности задач классификации временных рядов и
		методов их решения;
		Особенности задач регрессии для временных рядов и
		методы их решения с применением машинного
		обучения.
		Особенности методов глубокого обучения среди других
		методов машинного обучения.
		Обзор особенностей обучения глубоких нейронных
		сетей в приложениях к анализу временных рядов.
		Обзор перспектив и текущего состояния некоторых
	Особенности использования	архитектур полносвязных нейронных сетей;
	методов глубокого обучения в	Обзор перспектив и текущего состояния некоторых
6	применении к анализу	архитектур рекуррентных нейронных сетей и их
	временных рядов.	использование в анализе временных рядов;
	временных рядов.	1 1
		использование в анализе временных рядов;
		Механизм внимания и его использование в
		архитекторах нейронных сетей предназначенных для
		анализа временных рядов.

2.3. Программа дисциплины реализуется полностью на иностранном языке

2.4. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Электронные ресурсы (издания)

- 1. M.B. Ронкин. Kypc Time Series Analysis. URL: https://github.com/MVRonkin/Time-Series-Analysis-Lectures-and-Workshops (дата обращения: 04.10.2021).
- 2. Примеры использования библиотеки SKTimes. URL: https://github.com/sktime/sktime-tutorial-pydata-amsterdam-2020 (дата обращения: 04.10.2021).
- 3. Практический Анализ временных рядов. URL: https://github.com/nmmarcelnv/PracticalTimeSeries (дата обращения: 04.10.2021).
- 4. Список открытых ресурсов по анализу временных рядов с использованием методов глубокого обучения нейронных сетей. URL: https://github.com/Alro10/deep-learning-time-series (дата обращения: 04.10.2021).
- 5. Список открытых ресурсов по анализу временных рядов. URL: https://github.com/bifeng/Awesome-time-series (дата обращения: 04.10.2021).
- 6. Список библиотек анализа временных рядов для языка программирования Python. URL: https://github.com/MaxBenChrist/awesome_time_series_in_python (дата обращения: 04.10.2021).

- 7. Ресурс, посвященный методам и наборам данных для классификации временных рядов. URL: http://timeseriesclassification.com/index.php (дата обращения: 04.10.2021).
- 8. Репозиторий, связанный с книгой Practical Time Series Analysis. URL: https://github.com/PracticalTimeSeriesAnalysis/BookRepo (дата обращения: 04.10.2021).
- 9. Apxив наборов данных для анализа временных рядов. URL: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ (дата обращения: 04.10.2021).

Профессиональные базы данных, информационно-справочные системы

- 1. Цифровая библиотека научно-технических изданий Института инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronic Engineers (IEEE)) на английском языке http://www.ieee.org/ieeexplore
- 2. Oxford University Press http://www.oxfordjournals.org/en/
- 3. Архив препринтов с открытым доступом https://arxiv.org/

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Academic Search Ultimate EBSCO publishing http://search.ebscohost.com
- 2. eBook Collections Springer Nature https://link.springer.com/
- 3. Гугл Академия https://scholar.google.ru/

2.5. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Анализ временных рядов

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 2

NC.	D	0	Таолица 2
No	Виды занятий	Оснащенность специальных	Перечень лицензионного
п/п		помещений и помещений для	программного обеспечения.
		самостоятельной работы	Реквизиты подтверждающего
			документа
1	Лекции; Лабораторные	Аудитория с проектором	Используется
	занятия.		бесплатно-распространяемое
			программное обеспечение:
			1. Python –
			https://www.python.org/
			2. PyTorch -
			https://pytorch.org/
			3. TensorFlow, Keras -
			https://www.tensorflow.org/
			4. Sktime -
			https://www.sktime.org/en/v0.4.2/
			5. Pandas -
			https://pandas.pydata.org/
			6. Anaconda solution -
			https://www.anaconda.com/
			Веб - среда разработки для языка
			программирования Python:

	7. google colab -
	https://colab.research.google.com/

ПРОГРАММА МОДУЛЯПРИЛОЖЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

РАЗДЕЛ 2. СОДЕРЖАНИЕ И ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ ДИСЦИПЛИН МОДУЛЯ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ 2

КОМПЬЮТЕРНОЕ ЗРЕНИЕ

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ронкин Михаил	кандидат	доцент	Учебно-научный центр
	Владимирович	технических наук,		"Информационная
		нет		безопасность",
				ИРИТ-РТФ, УрФУ

Рекомендовано учебно-методическим советом института радиоэлектроники и информационных технологий - РтФ

Протокол № 7 от 11 октября 2021 г.

2. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ 2 КОМПЬЮТЕРНОЕ ЗРЕНИЕ

2.1. Технологии обучения, используемые при изучении дисциплины модуля

- Традиционная (репродуктивная) технология;
- Смешанное обучение с использованием онлайн-курса;
- Исключительно электронное обучение с использованием онлайн-курса.

2.2. Содержание дисциплины

Таблица 1

Код раздела, темы	Раздел, тема дисциплины	Гаолица Г Содержание
1	Современные подходы к решению задач компьютерного зрения.	Обзор некоторых задач компьютерного зрения; Особенности представления изображения в цифровом виде; Принципы цифровой обработки изображений; Основные операции цифровой обработки изображений
2	Особенности использования методов машинного обучения в задачах компьютерного зрения	Предмет машинного обучения; Виды признаков изображений; Обзор некоторых методов решения задач компьютерного зрения с использованием машинного обучение; Особенности глубоких нейронных сетей и их место среди методов решения задач компьютерного зрения
3	Особенности нейронных сетей и их обучение на примере полносвязных нейронных сетей.	Описание слоя нейронной сети; Процедура прямого прохождения; Метод обратного распространения ошибки; Стохастический градиентный спуск и его виды; Проблемы обучения методом обратного распространения ошибки; Обзор функций активации; Инициализация весовых параметров нейронных сетей; Особенности выбора функций активации нейронных сетей; Регуляризация обучения нейронных сетей: лассо, Тихонов, дропаут, батчнорм (и др. нормализации); Аугментация изображений; Предобучение нейронных сетей; Перенос обучения; Методы дообучения нейронных сетей.
4	Особенности задачи классификации изображений с использованием сверточных нейронных сетей.	Виды сверток в сверточных нейронных сетях; Виды передискретизации (пулинга и интерполяция); Обзор архитектур сверточных нейронных сетей для решения задачи классификации. Тренды развития архитектур сверточных нейронных сетей.
5	Особенности задач семантической сегментации и	Задача сегментации; Архитектуры сверточных нейронных сетей семантической

	сводящихся к ним задач компьютерного зрения	сегментации; Транспонированная свертка; Слои повышения разрешения;
6	Особенности задач поиска и выделения объектов на изображениях и сводящиеся к ним задачи компьютерного зрения.	Обзор особенностей архитектур нейронных сетей многоэтапного поиска и выделения объектов на изображениях; Обзор особенностей архитектур для экземплярной сегментации; Обзор особенностей архитектур одноэтапного поиска и выделения объектов. Обзор задач, сводящихся к поиску и выделению объектов на изображениях.
7	Обзор задачи генерирования изображений, и их представления, а также сводящихся к ним задачи компьютерного зрения и методы их решения при помощи глубоких нейронных сетей	Особенности задачи генерации изображений; Особенности автоэнкодеров, в том числе вариационный автоэнкодер; Виды генеративно-состязательных нейронных сетей; Обзор некоторых нестандартных задач компьютерного зрения и методов их решения.

2.3. Программа дисциплины реализуется полностью на иностранном языке

2.4. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ КОМПЬЮТЕРНОЕ ЗРЕНИЕ

Электронные ресурсы (издания)

- 1. Drive into deep learning, Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J. 2021. URL: https://d2l.ai/ (дата обращения: 04.10.2021).
- 2. Deep Learning Book. Ian Goodfellow and Yoshua Bengio and Aaron Courville, MIT Press, 2016. URL: https://www.deeplearningbook.org/ (дата обращения: 04.10.2021).
- 3. Он-лайн курс "Нейронные сети и компьютерное зрение" URL: https://stepik.org/course/50352/promo (дата обращения: 01.10.2021).
- 4. Дьяков А. Глубокое обучение. URL: https://github.com/Dyakonov/DL (дата обращения: 01.10.2021).
- 5. М.В. Ронкин Компьютерное зрение. URL: https://github.com/MVRonkin/Computer-Vision-Course lec-practice (дата обращения: 04.10.2021).
- 6. Deep learning theory lecture notes Matus Telgarsky 2021. URL: https://mjt.cs.illinois.edu/dlt/ (дата обращения: 04.10.2021).
- 7. Онлайн курс "Программирование глубоких нейронных сетей на Python". URL: https://openedu.ru/course/urfu/PYDNN/ (дата обращения: 05.10.2021).

Профессиональные базы данных, информационно-справочные системы

1. Цифровая библиотека научно-технических изданий Института инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronic Engineers (IEEE)) на английском языке – http://www.ieee.org/ieeexplore

- 2. Oxford University Press http://www.oxfordjournals.org/en/
- 3. Архив препринтов с открытым доступом https://arxiv.org/

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Academic Search Ultimate EBSCO publishing http://search.ebscohost.com
- 2. eBook Collections Springer Nature https://link.springer.com/
- 3. Гугл Академия https://scholar.google.ru/
- 4. Электронный научный архив УрФУ https://elar.urfu.ru/
- 5. Зональная научная библиотека (УрФУ) http://lib.urfu.ru/
- 6. Портал информационно-образовательных ресурсов УрФУ https://study.urfu.ru/
- 7. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 8. Университетская библиотека ONLINE https://biblioclub.ru/
- 9. Электронно-библиотечная система "Библиокомплектатор" (IPRbooks) http://www.bibliocomplectator.ru/available
- 10. Электронные информационные ресурсы Российской государственной библиотеки https://www.rsl.ru/
- 11. Научная электронная библиотека «КиберЛенинка» https://cyberleninka.ru/

2.5. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Компьютерное зрение

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 2

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
	Лекции;	Компьютерный класс.	Используется
	Практические	Мультимедийный проектор с	бесплатно-распространяемое
	занятия;	экраном;	программное обеспечение:
	,	Сетевое оборудование;	1. Python –
		Локальная сеть с выходом в	https://www.python.org/
		глобальную сеть Интернет.	2. PyTorch -
			https://pytorch.org/
			3. TensorFlow, Keras -
			https://www.tensorflow.org/
			4. opency - https://opency.org/
			5. skimage -
			https://scikit-image.org/
			6. Anaconda solution -
			https://www.anaconda.com/
			7. Веб - среда разработки
			для языка программирования

	Python: google colab -
	https://colab.research.google.com/

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Код модуля М.1.7

Модуль Приложения искусственного интеллекта

Екатеринбург, 2021

Оценочные материалы по модулю составлены авторами:

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ронкин Михаил	кандидат	доцент	Учебно-научный центр
	Владимирович	технических		"Информационная
		наук, нет		безопасность", ИРИТ-РТФ,
				УрФУ

Рекомендовано учебно-методическим советом института радиоэлектроники и информационных технологий - РтФ

Протокол № 7 от 11 октября 2021 г.

1. СТРУКТУРА И ОБЪЕМ МОДУЛЯ ПРИЛОЖЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах и часах	Форма итоговой промежуточной аттестации по дисциплинам модуля и в целом по модулю
1.	Анализ временных рядов	6/216	Зачет
2.	Компьютерное зрение	6/216	Зачет
	ИТОГО по модулю:	12/432	

2. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО МОДУЛЮ

Не предусмотрено

Раздел 3. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Модуль М 1.7 Приложения искусственного интеллекта

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ронкин Михаил	кандидат	доцент	Учебно-научный центр
	Владимирович	технических наук,		"Информационная
	_	нет		безопасность",
				ИРИТ-РТФ, УрФУ

Рекомендовано учебно-методическим советом института радиоэлектроники и информационных технологий - РтФ

Протокол № 7 от 11 октября 2021 г.

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Таблица 1

		1	Таолица т
Код и			Контрольно-оцено
наименование			чные средства для
	Индикаторы	П	оценивания
компетенций,	достижения	Планируемые	достижения
формируемые	компетенции	результаты обучения	результата
с участием			обучения по
дисциплины			дисциплине
1	2	3	4
ОПК-8. Способен	ОПК-8.1. Применяет	ОПК-8.1. 3-1. Знает	Коллоквиум;
разрабатывать	инструментальные среды,	инструментальные среды,	домашняя работа;
алгоритмы и	программно-технические	программно-технические	выполнение
программные	платформы для решения	платформы для решения	лабораторных
средства для	задач в области создания и	профессиональных задач	работ; зачёт
решения задач в	применения искусственного	ОПК-8.1. У-1. Умеет	раоот, зачет
области создания	интеллекта	применять	
и применения		инструментальные среды,	
искусственного		программно-технические	
интеллекта		платформы для решения	
		профессиональных задач	
ПК-1. Способен	ПК-1.1. Исследует и	ПК-1.1. 3-1. Знает	
исследовать и	разрабатывает архитектуры	архитектурные принципы	
разрабатывать	систем искусственного	построения систем	
архитектуры	интеллекта для различных	искусственного интеллекта,	
систем	предметных областей	методы декомпозиции	
искусственного		основных подсистем	
интеллекта для		(компонентов) и реализации	
различных		их взаимодействия на	
предметных		основе методологии	
областей на		предметно-	
основе		ориентированного	
комплексов		проектирования	
методов и		ПК-1.1. У-1. Умеет	
инструментальны		выстраивать архитектуру	
х средств систем		системы искусственного	
искусственного		интеллекта, осуществлять	
интеллекта		декомпозицию основных	
		подсистем (компонентов) и	
		реализации их	
		взаимодействия на основе	
		методологии предметно-	
		ориентированного	
	1	проектирования	

2. ВИДЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ, ВКЛЮЧАЯ МЕРОПРИЯТИЯ ТЕКУЩЕЙ АТТЕСТАЦИИ

2.1. Распределение объема времени по видам учебной работы

Таблица 2

			Объем времени, отведенный на освоение дисциплины модуля								
	Наименование	Аудиторные занятия, час.					Всего по дисциплине				
№ п/ п	дисциплины модуля Приложения искусственного интеллекта	Занятия лекцион ного типа	Практиче ские работы	Лаборатор ные работы	Всего	Промежуточная аттестация (форма итогового контроля)	Контактная работа (час.)	Самостоятельная работа студента, включая текущую аттестацию (час.)	Час.	Зач. ед.	
1	2	3	4	5	6	7	8	9	10	11	
1.	Анализ временных рядов	18	0	18	36	Зачет	41,65	174,35	216	6	

2.2.Виды СРС, количество и объем времени на контрольно-оценочные мероприятия СРС по дисциплине

Контрольно-оценочные мероприятия СРС включают самостоятельное изучение материала, подготовку к аудиторным занятиям и мероприятиям текущего контроля, выполнение и оформление внеаудиторных мероприятий текущего контроля и подготовку к мероприятиям промежуточного контроля.

Таблица 3

№ п/п	Вид самостоятельной работы студента по дисциплине модуля	Количество контрольно-оце ночных мероприятий СРС	Объем контрольно-оцен очных мероприятий СРС (час.)
1.	Подготовка к лекционным, практическим занятиям		27 час.
2.	Выполнение и оформление мероприятий текущего контроля:		
3.	Домашняя работа	1	5 час.
4.	Коллоквиум	2	10 час.
5.	Подготовка к зачету	зачет	12 час.
6.	Самостоятельное изучение материала для подготовки к выполнению контрольных мероприятий		120,35 час.
	Итого на СЕ	РС по дисциплине:	174,35 час.

3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

1.Лекции: коэффициент значимости совокупных результатов лекционных занятий – 0,4				
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах		
Коллоквиум № 1	2 сем.	50		
Коллоквиум №2	2 сем.	50		

Весовой коэффициент значимости результатов текущей аттестации по лекциям – 1					
Промежуточная аттестация по лекциям – не предусмотрена					
Весовой коэффициент значимости результатов промежуточн	ой аттестации	по лекциям			
-1					
2. Лабораторные занятия: коэффициент значимости совокуп	ных результат	ОВ			
лекционных занятий – 0,6					
Текущая аттестация на практических/семинарских	Текущая аттестация на практических/семинарских Сроки – Максималь				
занятиях	семестр,	ная оценка			
	учебная	в баллах			
	неделя				
Отчеты по результатам работ	2 сем.	40			
Домашняя работа 2 сем. 60					
Весовой коэффициент значимости результатов текущей аттеспрактическим/семинарским занятиям—0,4	стации по	•			

Промежуточная аттестация по практическим/семинарским занятиям— зачет Весовой коэффициент значимости результатов промежуточной аттестации по практическим/семинарским занятиям—0,6

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1.В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл. 1 результатам обучения (индикаторам).

Таблица 4 Критерии оценивания учебных достижений обучающихся

Результаты обучения	Критерии оценивания учебных достижений, обучающихся на соответствие результатам обучения/индикаторам		
Знания	Студент демонстрирует знания и понимание в области изучения на уровне указанных индикаторов и необходимые для		
	продолжения обучения и/или выполнения трудовых функций и действий, связанных с профессиональной деятельностью.		
Умения	Студент может применять свои знания и понимание в контекстах, представленных в оценочных заданиях, демонстрирует освоение умений на уровне указанных индикаторов и необходимых для продолжения обучения и/или выполнения трудовых функций и действий, связанных с профессиональной деятельностью.		
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне указанных индикаторов.		
Личностные	Студент демонстрирует ответственность в освоении результатов		
качества	обучения на уровне запланированных индикаторов. Студент способен выносить суждения, делать оценки и формулировать выводы в области изучения.		

Студент может сообщать преподавателю и коллегам своего уровня собственное понимание и умения в области изучения.

4.2.Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Таблица 5 Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)				
No	Содержание уровня	Шкала оценивания			
п/п	выполнения критерия	Традиционн	ная	Качественная	
	оценивания результатов	характеристика	уровня	характеристика	
	обучения			уровня	
	(выполненное оценочное задание)				
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)	
	(индикаторы) достигнуты в	(80-100 баллов)			
	полном объеме, замечаний нет	·			
2.	Результаты обучения	Хорошо		Средний (С)	
	(индикаторы) в целом	(60-79 баллов)			
	достигнуты, имеются замечания,				
	которые не требуют				
	обязательного устранения				
3.	Результаты обучения	Удовлетворительн		Пороговый (П)	
	(индикаторы) достигнуты не в	0			
	полной мере, есть замечания	(40-59 баллов)			
4.	Освоение результатов обучения	Неудовлетворител	He	Недостаточный	
	не соответствует индикаторам,	ьно	зачтено	(H)	
	имеются существенные ошибки и	(менее 40 баллов)			
	замечания, требуется доработка				
5.	Результат обучения не достигнут,	Недостаточно свидетельств		Нет результата	
	задание не выполнено	для оценивания			

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

Задания по контрольно-оценочным мероприятиям в рамках текущей и промежуточной аттестации должны обеспечивать освоение и достижение результатов обучения (индикаторов) и предметного содержания дисциплины на соответствующем уровне.

5.1. Описание контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

5.1.1. Практические занятия

Не предусмотрено

5.1.2. Лабораторные занятия

Номер занятия	Примерный перечень тем практических занятий
1	Exploratory Data Analysis. Meet with Pandas and its methods for working with time series; meet with Seaborn and its methods for time series visualization.
2	Time Series Modeling. Deterministic models, main trend types, season models, regular and non-regular events, white Gauss Noises, non-stationary noisy system, random-walker behavior of the model.
3	Non-Parametric time series analysis. Meet with statsmodels.tsa. Time series decomposition (trend, season, residual), non-parametric time series prediction, moving average methods.
4	Machine learning based methods for time series. Meet with sktime. Time series transformations, time series prediction with sktime.
5	ARMA Models. Specify of work with ARIMA using sktime, statsmodels, pmdarima; the model order selection techniques; residual analysis; automatic methods of order selection; specificity of SARIMA models; exogeneous factors in SARIMAX model.
6	Classification of the univariate time series. Specificity of sklearn and sktime; conventional machine learning methods in sklearn; special methods of sktime, DTW distance, rocket classifier; dictionary-based classifiers.
7	Classification and forecasting of the multivariate time series. Specificity of working with multivariate data; classification with WEASEL methods; vector autoregression methods.
8	Deep-Learning based methods in Time series analysis. Investigation of 1-D CNN in classification and forecasting tasks.

5.1.3. Курсовая работа / Курсовой проект

Не предусмотрено

5.1.4. Контрольная работа

Не предусмотрено

5.1.5. Домашняя работа

Примерная тематика домашних работ:

- 1. Statistical analysis of time series.
- 2. Autoregressive analysis of time series
- 3. Extraction, selection and processing of features from data in time series analysis.

- 4. Features of using machine vision methods in time series analysis
- 5. Features of using deep learning methods in application to time series analysis.

Примерные задания в составе домашних работ:

- 1. Select some time series analysis problem, for instance some of them can be find by the following link: https://www.kaggle.com/datasets?search=time+series. For instance, the dataset with Air Quality parameters https://www.kaggle.com/wiseair/air-quality-in-milan-summer-2020.
- 2. Understand the code materials provided outline for the relevant dataset.
- 3. Propose your own solution for the selected problem.
- 4. Home work can be done by 2-4 students.

5.1.6. Расчетная работа / Расчетно-графическая работа

Не предусмотрено

5.1.7. Реферат / эссе / творческая работа

Не предусмотрено

5.1.8. Проектная работа

Не предусмотрено

5.1.9. Деловая (ролевая) игра / Дебаты / Дискуссия / Круглый стол

Не предусмотрено

5.1.10. Кейс-анализ

Не предусмотрено

5.1.11. Коллоквиум

Контрольные вопросы для коллоквиумов:

Part 1

- 1. Define the time series;
- 2. Examples of tasks that reduce to time series analysis;
- 3. Tell us about the types of time series, what methods of reducing a time series to an additive model can you name;
- 4. Tell us what are the components in the time series, how can you distinguish seasonality from the cyclical part;
- 5. Give a definition of noise, what types of noise can be, why noise i.i.d. is of particular importance;
 - 6. Define deterministic and stochastic time series, give examples;
- 7. Give definitions of stationarity, give examples of stationary problems in a narrow and broad sense, as well as an example of a non-stationary time series analysis problem;
 - 8. Give examples of time series tests for stationarity, why they are needed.
- 9. Give examples of multiparametric time series, what is the difference between exogenous factors and multiparametric factors;
 - 10. Tell us about the main statistical characteristics of time series:
 - 11. Tell us about the methods of analyzing the residual part of the time series;

- 12. Tell us about the moving average methods, what types there are and why they are needed.
 - 13. Name the features of autoregression models-the moving average.
- 14. Name the conditions for the use of simple and seasonal differentiation in the ARSS models.
 - 15. Tell us about the difference between ARMA, ARIMA, SARIMA, SARIMAX models.
 - 16. Name the meaning of the orders of the model SARIM (p,d,q)(P,D,Q)s.
 - 17. Tell us how to choose the orders of the ARSS models.
 - 18. Name the difference between: AIC, BIC and RSS.
- 19. Give examples of multidimensional time series and series with exogenous factors. What ARSS models can be used for them?
 - 20. Tell us what a generalized adaptive model is.

Part 2.

- 1. Tell us what signs time series have. Give examples.
- 2. Answer the question why and when should we consider individual signs of time series and when the time series themselves.
 - 3. Name the purposes of using intelligence data analysis.
 - 4. Name some methods of distinguishing features in time series. Give examples.
 - 5. Name some methods of feature selection in time series. Give examples.
 - 6. Name the difference between the frequency and time representation of time series.
- 7. Compare the goals and features of using classical statistical methods and machine learning methods in time series applications.
 - 8. Name the tasks and methods of clustering time series. Give examples.
- 9. Name the methods for calculating distances and time series metrics. Give examples of usage.
 - 10. Name the methods of searching for anomalies in time series. Give examples.
 - 11. What are the features of using deep learning in time series applications.
- 12. Give examples of architectures of fully connected neural networks for time series analysis.
 - 13. Give examples of convolutional neural network architectures for time series analysis.
 - 14. Give examples of recurrent neural network architectures for time series analysis.
- 15. Give examples of neural network architectures using layers of attention for time series analysis.
 - 16. Explain the importance and meaning of extended convolution in time series analysis.
 - 17. Explain the importance and meaning of using attention layers in time series analysis.
- 18. Compare different approaches to deep learning of neural networks in applications to time series analysis. Give examples.

5.2. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.2.1. Зачет в форме независимого тестового контроля (НТК)

НТК по дисциплине модуля не проводится.

Для проведения промежуточной аттестации используется

Не предусмотрено

Спецификация теста в системе СМУДС УрФУ / ФЭПО /Интернет-тренажера:

Не предусмотрено

5.2.2. Зачет в традиционной форме (тестирование)

Примерный вариант итогового теста:

- 1. Select the definition of trend in Time Series:
 - o part of any time series with almost monotonic (or locally monotonic) behavior, and frequently high intensity.
 - o part of any time series with relatively high frequency of repeating.
 - o stochastic part of any time series, could be stationary or non-stationary.
- 2. Select wrong statement for Time Series Models:
 - o rare but regular events need to be considered as cyclic part.
 - rare and irregular events can be excluded or processed as anomalies, like novelty, faulty and e.t.c.
 - o cyclic can be included into trend one.
- 3. Select the expression for random walk trend:
 - $\circ \quad \square(\mathbb{I}) = \square/(1 + \square \square \square (-\square(\mathbb{I} \square))).$
 - \circ \square _ \square = \square _(\square -1)+ \square _ \square .
 - \circ $\square(\square)=\square\cdot\square+\square$.
- 4. Select the definition of non-stationary time series:
 - Time series for which different parts are differ.
 - Time series with constant mean and variance for each of its segments.
 - Time series for which each parts are the same with no matter in which moment the part is taken.
- 5. Select the expression of auto-correlation function:

$$\begin{array}{ccc}
 & \frac{1}{N} \sum_{i=0}^{N-1} y \\
 & \frac{1}{N} \sum_{i=0}^{N-1} (y_i - ev)^2 \\
 & \frac{1}{N} \sum_{i=0}^{N-1} (y_i - ev)^2 \\
 & \frac{\sum_{i=0}^{N-1} (y_i - ev)}{var(y)}
\end{array}$$

6. Select the expression of SMAE measure:

$$\begin{array}{c}
\sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right)^{2} \\
\sum_{i=1}^{n} \left(y_{i} - ev(y) \right)^{2} \\
\downarrow^{n} \sum_{i=1}^{N} \left(y_{i} - ev(y) \right)^{2} \\
\downarrow^{n} \sum_{n=0}^{N} \left| y_{n} - y_{n} \right| \\
\downarrow^{n} \sum_{n=0}^{N} \left| y_{n} - y_{n}$$

7. Select the expression of Single Exponential Moving Average:

$$\circ \ \dot{y_n} = \alpha y_n + (1 - \alpha) y_{n-1}.$$

$$0 \quad y_{ma}(n) = \frac{1}{m} \sum_{i=n-m}^{n} w_{i} y \mid$$

$$\circ \quad \hat{y}_n = \sum_{i=1}^p \alpha_i y_{n-i}.$$

8. Select the expression of ARMA equation:

- 9. Select the reasons for using ARIMA instead of ARMA in forecasting of time series:
 - Select ARIMA If you obtain too big order of AR or MA parts for ARMA.
 - Select ARIMA If you have too noisy data (high noises influence).
 - Select ARIMA If you have non-stationary trend behavior of time series.
- 10. Select the reasons for using SARIMA instead of ARMA an ARIMA in forecasting of time series:
 - Select SARIMA If you have high season influence and/or non-stationary season part.
 - Select SARIMA If you have random-walk-like series behavior.
 - Select SARIMA If you have non-stationary trend behavior of time series.
- 11. Select wrong statement about the feature engineering of Time Series:
 - Exploratory Data Analysis allowing obtain for initial guesses of data behavior.
 - Feature selection can as supervised as unsupervised.
 - Feature extraction is the task of data representation for its fitting for any particular method.
- 12. Select the distance function for Time Series(or its segments) clustering for the case if you have no requirements of similar in time behavior,
 - o Euclidean Distance.
 - o Cosine-Similarity (correlation distance).
 - o Dynamic-Time-Wrapping distance.
- 13. Select wrong strategy for anomaly detection:
 - o use isolated forest for supervised task.
 - o use auto-encoder for semi-supervised task.
 - use one-class-support-vector-machine for unsupervised task.
 - 14. Select wrong statement for time series classification:
 - shapelet is a part of a time series segment that in the most represent its class.
 - ensemble-based time-series classifiers (such as RISE and TSF) are combination of specific point-wise feature extraction methods and random forest classifier based on those features.
 - The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) can-not out-outperform dictionary based classifiers such as BOSS.
 - 15. Select wrong statement about the Time Series Forecasting:
 - o classical machine-learning (data driven) algorithms allow to obtain best accuracy for any data but with low computational cost.
 - SARIMXA (in particular ARIMA) can not provide high performance on the large multivariate datasets.
 - Non-parametric-stochastic-models-based approach (like Holt-Winter) allow one to obtain the best accuracy for the small amount of univariate data.
 - 16. Select wrong statement about Deep-Learning in Time Series Analysis (DL in TSA):
 - 1-Dimensional Dialed Convolution Neural Network is the most popular among other DL in TSA due to relatively low probability of overfitting and high receptive field.
 - RNN are not the state-of-the-art of DL in TSA due to high complexity of training too deep network.
 - o Non-linear Autoregressive Network (NAR, NARX) are the best in accuracy of

forecasting in typical applications of DL in TSA.

Раздел 3. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

КОМПЬЮТЕРНОЕ ЗРЕНИЕ

Модуль М.1.7 Приложения искусственного интеллекта

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ронкин Михаил	кандидат технических	доцент	Учебно-научный центр
	Владимирович	наук, нет		"Информационная
				безопасность", ИРИТ-РТФ,
				УрФУ

Рекомендовано учебно-методическим советом института радиоэлектроники и информационных технологий - РтФ

Протокол № 7 от 11 октября 2021 г.

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Компьютерное зрение

Таблица 1

			Таолица 1
Код и			Контрольно-оценоч
			ные средства для
наименование	Индикаторы		оценивания
компетенций,	достижения	Планируемые	достижения
формируемые		результаты обучения	
с участием	компетенции		результата
дисциплины			обучения по
7			дисциплине
1	2	3	4
ОПК-8. Способен	ОПК-8.1. Применяет	ОПК-8.1. 3-1. Знает	Контрольная работа,
разрабатывать	инструментальные среды,	инструментальные среды,	домашняя работа,
алгоритмы и	программно-технические	программно-технические	коллоквиум,
программные	платформы для решения	платформы для решения	выполнение
средства для	задач в области создания и	профессиональных задач	лабораторных работ
решения задач в	применения искусственного	ОПК-8.1. У-1. Умеет	лаоораторных расот
области создания	интеллекта	применять	
и применения		инструментальные среды,	
искусственного		программно-технические	
интеллекта		платформы для решения	
		профессиональных задач	
ОПК-8.2.	ОПК-8.2. 3-1. Знает	ОПК-8.2. Разрабатывает	
Разрабатывает	принципы разработки	оригинальные программные	
оригинальные	оригинальных программных		
программные	средств для решения	в области создания и	
средства для	профессиональных задач	применения искусственного	
решения задач в	ОПК-8.2. У-1. Умеет	интеллекта	
области создания	разрабатывать		
и применения	оригинальные программные		
искусственного	средства для решения задач		
интеллекта	в области создания и		
	применения искусственного		
	интеллекта		
ПК-7. Способен	ПК-7.1. Руководит	ПК-7.1. 3-1. Знает	
руководить	проектами в области	принципы построения	
проектами по	сквозной цифровой	систем компьютерного	
созданию,	субтехнологии	зрения, методы и подходы к	
внедрению и	«Компьютерное зрение»	планированию и реализации	
использованию		проектов по созданию	
одной или		систем искусственного	
нескольких		интеллекта на основе	
сквозных		сквозной цифровой	
цифровых		субтехнологии	
субтехнологий		«Компьютерное зрение»	
искусственного		ПК-7.1. У-1. Умеет	
интеллекта в		руководить проектами по	
прикладных		созданию, внедрению и	
областях		поддержке систем	
		искусственного интеллекта	
		на основе сквозной	
		цифровой субтехнологии	
		«Компьютерное зрение»	

2. ВИДЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ, ВКЛЮЧАЯ МЕРОПРИЯТИЯ ТЕКУЩЕЙ АТТЕСТАЦИИ

2.1 Распределение объема времени по видам учебной работы

Таблица 2

Объем времени, отве,					ни, отведенный на ост	воение дисципли	ны модуля			
		A	Аудиторные занятия, час.						го по иплине	
№ п/ п	п/ Наименование дисциплины модуля	Занятия лекцион ного типа	Практиче ские работы	Лаборатор ные работы	Всего	Промежуточная аттестация (форма итогового контроля)	Контактная работа (час.)	Самостоятельная работа студента, включая текущую аттестацию (час.)	Час.	Зач. ед.
1	2	3	4	5	6	7	8	9	10	11
1	Компьютерное зрение	18	0	36	54	Зачет	62,35	153,65	216	6

2.2 Виды СРС, количество и объем времени на контрольно-оценочные мероприятия СРС по дисциплине

Контрольно-оценочные мероприятия СРС включают самостоятельное изучение материала, подготовку к аудиторным занятиям и мероприятиям текущего контроля, выполнение и оформление внеаудиторных мероприятий текущего контроля и подготовку к мероприятиям промежуточного контроля.

Таблица 3

№ п/п	Вид самостоятельной работы студента по дисциплине модуля	Количество контрольно-оце ночных мероприятий СРС	Объем контрольно-оцен очных мероприятий СРС (час.)
1.	Подготовка к аудиторным занятиям и мероприятиям текущего контроля: лекционным, лабораторным занятиям.		27 час.
2.	Коллоквиум № 1	1	5 час.
3.	Коллоквиум № 2	1	5 час.
4.	Домашняя работа	1	5 час.
5.	Контрольная работа	2	10 час.
5.	Подготовка к зачету	зачет	12 час.
6.	Самостоятельное изучение материала		89,65 час.
	Итого на С	153,65 час.	

3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)

Процедуры текущей и промежуточной аттестации по дисциплине

1.Лекции: коэффициент значимости совокупных результатов лекционных занятий – 0.5		
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максимальна я оценка в баллах
Коллоквиум №1	2 сем.	25

Коллоквиум №2	2 сем	25
Контрольная работа № 1	2 сем.	25
Контрольная работа № 2	2 сем.	25

Весовой коэффициент значимости результатов текущей аттестации по лекциям – 0,5

Промежуточная аттестация по лекциям – зачет.

Весовой коэффициент значимости результатов промежуточной аттестации по лекциям – 0.5

2. Лабораторные занятия: коэффициент значимости совокупных результатов практических/семинарских занятий – 0.5

Текущая аттестация на лабораторных занятиях	семестр,	Максимальна я оценка в баллах
Проверка отчетов по лабораторным работам	2 сем.	50
Домашняя работа №1	2 сем.	50

Весовой коэффициент значимости результатов текущей аттестации по лабораторным занятиям – 0

Промежуточная аттестация по лабораторным занятиям – нет.

Весовой коэффициент значимости результатов промежуточной аттестации по лабораторным занятиям – $\mathbf{0}$

3. Практические/семинарские занятия: не предусмотрены. коэффициент значимости совокупных результатов практических занятий – 0

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1 В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4

Критерии оценивания учебных достижений обучающихся

Результаты	Критерии оценивания учебных достижений, обучающихся на
обучения	соответствие результатам обучения/индикаторам
Знания	Студент демонстрирует знания и понимание в области изучения
	на уровне указанных индикаторов и необходимые для
	продолжения обучения и/или выполнения трудовых функций и
	действий, связанных с профессиональной деятельностью.

Умения	Студент может применять свои знания и понимание в контекстах,			
	представленных в оценочных заданиях, демонстрирует освоение			
	умений на уровне указанных индикаторов и необходимых для			
	продолжения обучения и/или выполнения трудовых функций и			
	действий, связанных с профессиональной деятельностью.			
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне			
	указанных индикаторов.			
Личностные	Студент демонстрирует ответственность в освоении результатов			
качества	обучения на уровне запланированных индикаторов.			
	Студент способен выносить суждения, делать оценки и			
	формулировать выводы в области изучения.			
	Студент может сообщать преподавателю и коллегам своего уровня			
	собственное понимание и умения в области изучения.			

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Таблица 5 Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)					
No	Содержание уровня	Шкала оценивания				
п/п	выполнения критерия			Качественная		
	оценивания результатов	характеристика	уровня	характеристика		
	обучения	обучения		уровня		
	(выполненное оценочное	(выполненное оценочное				
	задание)					
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)		
	(индикаторы) достигнуты в	(80-100 баллов)				
	полном объеме, замечаний нет					
2.	Результаты обучения	Хорошо		Средний (С)		
	(индикаторы) в целом	(60-79 баллов)				
	достигнуты, имеются замечания,					
	которые не требуют					
	обязательного устранения					
3.	Результаты обучения	Удовлетворительн		Пороговый (П)		
	(индикаторы) достигнуты не в	0				
	полной мере, есть замечания	(40-59 баллов)				
4.	Освоение результатов обучения	Неудовлетворител	Не	Недостаточный		
	не соответствует индикаторам,	ьно	зачтено	(H)		
	имеются существенные ошибки и	(менее 40 баллов)				
	замечания, требуется доработка					
5.	Результат обучения не достигнут,	Недостаточно свидетельств		Нет результата		
	задание не выполнено для оценивания					

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

Задания по контрольно-оценочным мероприятиям в рамках текущей и промежуточной аттестации должны обеспечивать освоение и достижение результатов обучения (индикаторов) и предметного содержания дисциплины на соответствующем уровне.

5.1. Описание контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

5.1.1. Практические занятия

Не предусмотрено

5.1.2. Лабораторные занятия

Номер занятия	Примерный перечень тем лабораторных занятий
1	The study of image representations and classical methods of their processing. Introduction to the opency or skimage library. Image representation, image generation. Adding noise to the image. A histogram of the brightness of the image. Methods of working with the brightness histogram. Methods of working with image filters.
2	Study of the features of classical methods for solving computer vision problems. Methods of HOG, DAISY, watershed, angle detection, correlation and others.
3	Studying the features of the pytorch library. Data representation, methods of working with data, image representation and their preprocessing. The study of a fully connected autoencoder for the MNIST dataset.
4	Studying the features of image classification using a convolutional neural network in the pytoch library. The CIFAR10 dataset. Architecture of convolutional networks, features of network training for classification tasks. Transfer of training.
5	Segmentation models in computer vision problems. Studying the U-net model. Retraining of the model. Features of learning transfer for semantic segmentation tasks. The study of image augmentation in semantic segmentation problems.
6	Tasks of searching and localization of objects in images. Features of the Detectron2 library. The COCO dataset. The study of neural networks Faster-RCNN (object detection), Mask-RCNN (instance segmentation) and FPN (Panoptic Segmentation).
7	Tasks of one-stage search and localization. Studying the features of the YOLO architecture.

The task of generating images. Training the generation network for the Fashion MNIST dataset. Learning InfoGAN. Studying CycleGAN.

5.1.3. Курсовая работа / Курсовой проект

Не предусмотрено

5.1.4. Контрольная работа

- 1. Advantages and Disadvantages of Using Deep Learning in Image Processing (Computer Vision).
- 2. Advantages and Disadvantages of Alternative approach to Using Deep Learning in Image Processing (Computer Vision).
- 3. Advantages of using Convolution Neural Network (CNN) in Image Processing and Analysis (Computer Vision).
- 4. Structure of Convolution Neural Network (meaning of feature extractor (backbone) and types of head layers).
- Meaning of an Receptive Field in CNN
- 6. Explaining how 2d-convolution layer work (Multiple Channel Multiple Kernel)
- 7. Meaning of extending the 2d-convolution operation (padding, stride, dialed rate)
- 8. Types of Convolution and their aims:
- Conventional (square) Convolution,
- Cascade Convolution,
- Grouped Convolution,
- Spatially Separable Convolution,
- Pointwise Convolution,
- Deepwise-Convolution (and Deepwise-Separable Convolution),
- Pixel-shuffle (High Resolution) Convolution,
- Transposed Convolution.
- 9. Meaning of the Local Pooling Operation in CNN (for instance max-pooling).
- 10. Types of Local Pooling operations and their aims: max-pooling, average-pooling,
- 11. Advantages of the Global Average Pooling in CNN in comparison with flatten operation.
- 12. Types of Upsampling Layers
- 13. Meaning of the Activation Function in Neural Networks
- 14. Why we use Sigmoid and SoftMax in Last Layers for Classification tasks (Advantages and Disadvantages of Sigmoid Activation function).
- 15. Advantages of Reflected Linear Unit (ReLU) in hidden layers of CNN.
- 16. Types of ReLU: ReLU6, Leaky ReLU, Parametric ReLU, ELU, SELU, GELU, Swish, Mish and how do you think why they all need (Disadvantages of Conventional ReLU).
- 17. Meaning of Weights initialization.
- 18. Difference between Binary Classification, Multi-Class Classification and Multi-Label Classification,
- 19. Types of Loss Function for Classification:Binary Cross-Entropy, One-Hot Categorical Cross-Entropy, Sparse Categorical Cross-Entropy, Imbalance cases.
- 20. Reasons of using Cross-Entropy with Logits (Binary Cross-Entropy with Logits and Categorical Cross-Entropy with Logits).
- 21. Types of Regression Loss: L2, L1, L1smooth (Huber Loss)
- 22. Specificity of Loss function in Semantic Segmentation.
- 23. Method of Neural Network Regularization: L2, data augmentation, 2d Dropout (spatial Dropout), Batch Normalization.
- 24. Advantages and Disadvantages of Batch Normalization and why some times we need to use Layer Norm or Group Norm.
- 25. Meaning of Cross Validation.

- 26. Meaning of Learning rate choosing and scheduling.
- 27. Types of Stochastic Gradient Descent (SGD): SGD with Momentum (Nesterov), RMS prop, ADAM why they need to use.
- 28. The main tendencies in the modern state of CNN Architectures.
- 29. The main idea of Network In Net (and inception layer).

5.1.5. Домашняя работа

Примерная тематика домашних работ:

- 1. Modern approaches to solving computer vision problems.
- 2. Features of using machine learning methods in computer vision tasks
- 3. Features of neural networks and their training on the example of fully connected neural networks.
- 4. Features of the problem of image classification using convolutional neural networks.
- 5. Features of semantic segmentation tasks and computer vision tasks that reduce to them
- 6. Features of the tasks of searching and selecting objects in images and computer vision tasks.

Примерные задания в составе домашних работ:

- 1. Choosing a computer vision task and the corresponding data set, for example, on a website https://www.kaggle.com/datasets ?tags=13207-Computer+Vision, for example, a dataset https://www.kaggle.com/rhammell/full-vs-flat-tire-images corresponding to the task of classifying flat tires by their photos.
- 2. Understand the outline of solutions presented for the corresponding data set.
- 3. Offer your own solution to the chosen task.
- 4. Homework can be done by a team of 2-4 students.

5.1.6. Расчетная работа / Расчетно-графическая работа [оставить нужное]. Не предусмотрено

5.1.7. Реферат / эссе / творческая работа [оставить нужное] Не предусмотрено

5.1.8. Проектная работа

Не предусмотрено

5.1.9. Деловая (ролевая) игра / Дебаты / Дискуссия / Круглый стол *Не предусмотрено*

5.1.10. Кейс-анализ

Не предусмотрено

5.1.10. Коллоквиум

Примерная тематики коллоквиума:

Colloquium No. 1:

- 1. Modern approaches to solving computer vision problems.
- 2. Features of using machine learning methods in computer vision tasks.
- 3. Features of neural networks and their training on the example of fully connected neural networks.

Colloquium No. 2:

- 1. Features of the problem of image classification using convolutional neural networks.
- 2. Features of semantic segmentation tasks and computer vision tasks reduced to them.
- 3. Features of the tasks of searching and selecting objects in images and computer vision tasks that reduce to them.
- 4. An overview of the problem of generating images, and their representation, as well as computer vision problems that reduce to them and methods for solving them using deep neural networks.

Примерные задания для коллоквиума:

Colloquium No. 1:

- 1. Methods of digital representation of images.
- 2. Typical image processing tasks.
- 3. Current trends in solving computer vision problems and approaches to solving them.
- 4. To give examples of computer vision problems when neural networks have advantages over classical methods, to justify the answer.
- 5. What types of neural networks are currently popular in computer vision systems, what tasks do they solve?
- 6. Classification of computer vision systems, areas of their application.
- 7. Methods of solving computer vision problems.
- 8. Features of the convolution operation.
- 9. The purpose of using the convolution operation.
- 10. What is machine learning?
- 11. Differences between machine learning methods and other statistical methods.
- 12. Differences between neural networks and deep neural networks.
- 13. Advantages of using deep neural networks in computer vision applications.
- 14. Types of neural networks for solving computer vision problems.
- 15. Features of convolutional neural networks among other approaches to solving computer vision problems.
- 16. Explain the purpose of using mini-batches in gradient descent.
- 17. Explain what problems conventional gradient descent has, why more complex methods such as adaptive and second-order methods are needed.
- 18. Explain how the reverse propagation of the error works for a multilayer perceptron with one output.
- 19. Name and comment on the problem of over-training /under-training of neural networks, how to reduce the likelihood of over-training.
- 20. Explain how the features of data preparation affect the conditionality of the formed sample, why training, test and validation samples are needed.
- 21. What do you think, why do we need different options for initializing neural network weights, how do you think the pre-training of neural networks affects the learning result, whether it is possible to retrain trained neural networks and how.
- 22. What results in the absence of an activation function (linear activation) in the hidden layers of the neural network.
- 23. Name the main types of activation functions.
- 24. Why do you think the ReLU function is often used on the internal layers of the network, why do you need the rest of the activation functions,
- 25. How do you think drop-out methods help in regularization of neural network training, explain the operation of drop-out.
- 26. Why do you think normalization methods (including butch normalization) have gained wide popularity, what are their advantages and disadvantages?

- 27. Name the regularization methods in neural networks and the purpose of their use.
- 28. What do you think are the advantages and disadvantages of convolutional networks compared to such networks as fully connected.

Colloquium No. 2:

- 1. Advantages of using deep convolutional neural networks in computer vision applications.
- 2. Explain the architecture of LeNet and the purpose of using each type of network layer.
- 3. Why do you think it is necessary to replace a simple convolution operation with more advanced analogues, give examples.
- 4. Name the main types of convolutional layers in neural networks and their applications.
- 5. What do you think, why do you need a 1x1 convolution (point convolution), what types of convolutions with the use of a 1x1 convolution you can bring.
- 6. Why do you think deep convolution is needed, name several types of convolutional neural network architectures where it is used.
- 7. Give examples of modern convolutional network architectures and tell about them, what is their trend.
- 8. What do you think makes it possible to move from the classification task to the segmentation task, how it is implemented in practice, give examples.
- 9. To give variants of convolutions in decoders of segmentation neural networks,
- 10. Briefly explain the features of bilinear interpolation, reverse convolution, convolution with increased resolution, tell where these operations are used.
- 11. Briefly explain the features of the localization networks of objects in images.
- 12. Briefly explain the features of the operation of networks of a multi-stage (regional) approach to the detection and selection of objects in images.
- 13. Briefly explain the features of the work of networks of one-stage approaches to the detection and selection of objects in images.
- 14. Briefly explain what tasks can be solved with the help of networks for detecting and highlighting objects in images.
- 15. Briefly describe the tasks of instance segmentation and panoptic segmentation.
- 16. What are the differences between the generative approach and the traditional discriminant approach that you can name, and what principles of generative networks are used today.
- 17. What do you think, why exactly generative adversarial networks (GANS) have become widespread, what are their features and differences from other types of generative networks.
- 18. What kind of training do you think auto-coding networks belong to? Give examples of solving problems using auto-coding networks, how does an auto-coding network differ from a trivial repeater.
- 19. What are the main trends in the development of deep learning methods of neural networks in computer vision applications.
- 20. Name the features of transformer networks in comparison with convolutional networks.

5.2. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.2.1. Зачет в форме независимого тестового контроля (НТК)

НТК по дисциплине модуля не проводится.

5.2.2. Зачет в традиционной форме (устные /письменные ответы на вопросы):

- 1. Select the <u>wrong</u> statement about the reasons of popularity of Convolution Neural Network in the Image Processing and Analysis:
 - 1. Automatically feature extraction (without manually formal description of features).
 - 2. High degree of weights reusing (Memory Effect).
 - 3. Reduce the number parameters in comparison with full-connected networks.
- 2. Select the <u>correct</u> statement about the **2D-Convolution** (**conventional with the square kernel**):
 - 1. Input for convolution usually have 2 dimensions.
 - 2. Each kernel has 3 dimensions and produce one value through each step (or its sliding).
 - 3. Each kernel can produce any required number of feature map.
- 3. Select the *correct* statement about the **specific types 2D-Convolution**:
 - 1. Cascade Convolution it is the sequential horizon and vertical rectangular convolutions.
 - 2. Group Convolution allows one to increase the receptive field.
 - 3. Dialed Convolution allows one to reduce the overall number of parameters.
- 4. Select the <u>wrong</u> statement about the **specific types 2D-Convolution**:
 - 1. Point-Wise convolution often applied for reducing/increasing number of feature maps.
 - 2. Deep-Wise convolution allow to reduce overall number of parameters.
 - 3. Spatially-Separable convolution using to replace one square large-size kernel with several small-size square kernels, like 7x7 is equal to 3 3x3 kernels.
- 5. Select the *correct* statement about the **Global Pooling**:
 - 1. Global Max Pooling is the most popular in this area.
 - 2. Global Pooling allow one to overcome the problem of additionalfull-connected layers (in comparison with flatten layer).
 - 3. Global Pooling allows one to reduction in the number of channels.
- 6. Select the wrong statement about the conventional ReLU drawbacks:
 - 1. ReLU has problem of vanishing when a lot of the weights are become zeros.
 - 2. ReLU has a problem with lack of saturation above zero.
 - 3. ReLU has saturation of its gradient.
- 7. Select the *correct* statement about the **Weights Initialization**:
 - 1. Better to initialize weights with small uniformly distributed values.
 - 2. Better to initialize weights with random values that have distribution with dispersion inversely proportional to number of parameters values.
 - 3. Better to initialize all weights with the same variance.
- 8. Select the *correct* statement about the **Weights Initialization**:
 - 1. Better to initialize weights with small uniformly distributed values.
 - 2. Better to initialize weights with random values that have distribution with dispersion inversely proportional to number of parameters values.
 - 3. Better to initialize all weights with the same variance.
- 9. Select the *correct* definition of **Loss Function**:
 - 1. Loss function is a method of evaluating how well your models suit for your task and for your data.

- 2. Loss function show the accuracy of the model in your task.
- 3. Loss function allow to estimate average error among the all dataset (or its batch).
- 10. Select the *wrong* choose of **Loss Function** for Semantic Segmentation task:
 - 1. Mean Square Error in each pixel for determine how well we suit the shape of object.
 - 2. Categorical Cross Entropy in each pixel for its class classification.
 - 3. Dice loss for determine how well we highlight an target area.
- 11. Select the *correct* reason to introduce the **regularization** for Neural Network:
 - 1. Reducing of the overfitting problem.
 - 2. Reducing of the training time.
 - 3. Increasing the accuracy on the training data.
- 12. Select the *correct* reason to use **DropOut regularization**:
 - 1. Reduce the probability of the co-adaptation problem.
 - 2. Reducing the requirement for learning rate and other hyper parameters.
 - 3. Reduce the probability of the gradient explosion problem.
- 13. Select the *correct* reason of using **BatchNorm regularization**:
 - 1. Reduce the probability of the co-adaptation problem.
 - 2. Reduce the influence of the Internal Co-variate shift problem between the batches.
 - 3. Increase the accuracy in the case of independent data.
- 14. Select the *correct* **Drawback of Simple BatchNorm regularization**:
 - 1. Reducing the accuracy in the case of the small or different batch size.
 - 2. Require to decrease the learning rate due to the change of loss function behavior.
 - 3. Increase the gradient vanishing probability.
- 15. Select the *correct* **Drawback of Simple BatchNorm regularization**:
 - 1. Reducing the accuracy in the case of the small or different batch size.
 - 2. Require to decrease the learning rate due to the change of loss function behavior.
 - 3. Increase the gradient vanishing probability.
- 16. Select the <u>wrong</u> specificity of **other Normalization techniques** in comparison with BatchNorm:
 - 1. LayerNorm work similar as in evaluation as in training stages.
 - 2. GroupNorm work well only for large batch size.
 - 3. In the case of small batch size you may also use weigh normalization (or standardization).
- 17. Select the *wrong* statement about the **Cross-Validation**:
 - 1. Hold-Out Cross-Validation is the most common choice.
 - 2. K-Fold cross validation can be applied to best model selection.
 - 3. Use Hold-Out Cross-Validation for Imbalance data.
- 18. Select the *correct* statement about the **Stochastic Gradient Descent, SGD**:
 - 1. Use SGD with momentum especially for small batch size.
 - 2. Split you data on batches before training.
 - 3. Use learning rate scheduler only for simple SGD.
- 19. Select the *correct* statement about the **Adaptive Stochastic Gradient Descent, SGD**:
 - 1. RMSProp do not require to use momentum.
 - 2. Do not Use learning rate scheduler.
 - 3. Adam allow to take momentum into account automatically.
- 20. Select the *correct* statement about the **VGG Net**:

- 1. VGG use cascade convolution, which allowed increase the depth up to 19 layers.
- 2. VGG smaller than AlexNet (have less parameters).
- 3. VGG has similar structure with LeNet.

21. Select the *wrong* statement about the **Network in Network, NiN**:

- 1. InceptionNet (GoogLeNet) is the extension of the NiN idea.
- 2. NiN is supposed to learn ensemble of networks and one after all of them.
- 3. Different paths of the gradient in NiN are supposed to learn different features.

22. Select the *wrong* statement about the **reason why Resnet work**:

- 1. Skip connection reduce the requirement of dataset size because working as regularization.
- 2. Skip connection allows one to avoid the layer overfitting by its correction or by turning its off.
- 3. Skip connection allows one to make almost infinity depth of network by making some of the identity.

23. Select the *wrong* statement about the **specificity of Resnet work**:

- 1. use the same channel size in the input and output of the resnet block.
- 2. if the number of channels in the input and output of resnet bock different use pointwise convolution.
- 3. do not use dropout in the resnet block.

24. Select the *wrong* statement about the **DenceNet**:

- 1. DenseNet allows one to take into account low-level information by several skip-connection ways.
- 2. DenseNet increase the number of parameters in comparison with ResNet.
- 3. DenseNet do not require to have the same number of channels in the skip-connections due to concatenation.

25. Select the wrong statement about the MobileNetwork (V2):

- 1. MobileNet use block with expansion as hyperparameter and projection.
- 2. MobileNet use DeepWise-Separable convolution.
- 3. MobileNet do not use Residual Connections due to small size requirement.

26. Select the <u>wrong</u> statement about the **Squeeze-and-Excitation block**, (**SE block**):

- 1. SE block allow to highlight the most important features.
- 2. SE block make squeeze through each channel dimensions (width and height).
- 3. SE block have excitation intensity as hyperparameter.

27. Select the *wrong* statement about the **Efficient Net**:

- 1. Efficient Net architecture was obtained by the automatic architecture search mechanism.
- 2. Efficient Net uses Mobilenet-based blocks.
- 3. Efficient Net is intended to be used on small devices (like Mobile Phone).