Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ миректор по образовательной деятельности

С.Т. Князев

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1155229	Радиоэлектроника

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Астрономия	1. 03.05.01/33.01
Направление подготовки	Код направления и уровня подготовки
1. Астрономия	1. 03.05.01

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Осадченко	кандидат	Доцент	Департамент
	Валерий	физико-		фундаментальной и
	Харитонович	математических		прикладной физики
		наук, доцент		

Согласовано:

Учебный отдел

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Радиоэлектроника

1.1. Аннотация содержания модуля

Модуль содержит дисциплину «Основы радиоэлектроники». Изучение модуля направлено на формирование профессиональных компетенций в соответствии с образовательным стандартом и знакомит студентов с основными методами анализа аналоговых и импульсных (цифровых) электрических цепей, физическими принципами действия, параметрами и характеристиками электронных приборов, структурой логических элементов и цифровых устройств.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Основы радиоэлектроники	5
	ИТОГО по модулю:	5

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	
Постреквизиты и кореквизиты	
модуля	

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Основы радиоэлектроник и	ОПК-1 - Способен выявлять, формулировать и решать фундаментальные и прикладные задачи в области своей профессиональной деятельности и в междисциплинарных направлениях с использованием фундаментальных	3-1 - Демонстрировать понимание фундаментальных принципов, методов и подходов к решению фундаментальных и прикладных задач в профильной области деятельности и междисциплинарных направлениях У-1 - Выявлять и определять цели и пути решения фундаментальных и прикладных задач в профильной области деятельности, опираясь на фундаментальные законы и принципы, с использованием

	знаний и практических	соответствующих целям подходов и
	навыков	методов
		W 4 W
		Д-1 - Демонстрировать аналитические
		умения и креативное мышление
_	HIC 1 D	2.1.2
	ПК-1 - Владеет методами	3-1 - Знать основные методы
	астрономического,	астрономических, физических и
	физического и	математических исследований
	математического	
	исследований при	
	анализе глобальных	
	проблем на основе	
	глубоких знаний	
	фундаментальных	
	физико-математических	
	дисциплин	
	• • •	

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Основы радиоэлектроники

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
	Осадченко	Кандидат физико-		Департамент
1	Валерий	математических	Доцент	фундаментальной и
	Харитонович	наук, доцент		прикладной физики

Руководитель модуля

Осадченко В.Х.

Рекомендовано учебно-методическим советом института естественных наук и математики

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ

Авторы: Осадченко Валерий Харитонович, кандидат физико-математических наук, доцент

- 1.1 Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология;

1.2. Содержание дисциплины

Код раздела, темы	Раздел, тема дисциплины	Содержание
P1	ЭЛЕМЕНТНАЯ БАЗА СОВРЕМЕННОЙ РАДИОЭЛЕКТРОНИКИ	Структура и электрические свойства германия и кремния. Легирование полупроводников и их свойства. Электрические переходы. Свойства p-n - перехода. Вольтамперная характеристика p-n - перехода. Диод, как выпрямитель. Емкость p-n - перехода. Варикапы. Пробой p-n - перехода. Стабилитроны. Принцип действия биполярных транзисторов. Схемы включения транзисторов. Статические характеристики транзисторов. Эквивалентная схема транзистора. Полевые транзисторы с управляющим p-n - переходом. МОП-транзисторы со встроенным и индуцированным каналом. Интегральные микросхемы. Условные графические обозначения полупроводниковых приборов.
P2	АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ УСТРОЙСТВА	Классификация усилителей, их основные параметры и характеристики. Основные положения теории обратной связи применительно к усилителям. Усилительный каскад на биполярном транзисторе с общим эмиттером. Режим работы транзистора в усилительных каскадах. Графоаналитический метод расчета усилительного каскада. Усилительный каскад на биполярном транзисторе с общим коллектором (эмиттерный повторитель). Фазоинверсный каскад. Бестрансформаторные двухтактные каскады усиления мощности. Дифференциальные усилительные каскады. Операционные усилители (ОУ), их основные параметры и характеристики. Инвертирующий и неинвертирующий усилители на ОУ. Схемы сумматоров сигналов на ОУ. Вычитающие устройства на ОУ. Избирательный усилитель на ОУ. Интегратор и дифференциатор на ОУ. Логарифмический и экспоненциальный усилители. Схемы умножения и деления сигналов. Генераторы

		гармонических колебаний. Условия возникновения автоколебаний. LC-генератор с трансформаторной обратной связью.
		Генераторы «индуктивная трехточка», «емкостная трехточка», генератор с параллельным LC — контуром и операционным усилителем. RC-генератор с трехзвенным Г-образным RC-звеном. RC-генератор с мостом Вина.
P3	ЭЛЕМЕНТЫ ИМПУЛЬСНОЙ И ЦИФРОВОЙ ТЕХНИКИ	Параметры импульсного сигнала. Импульсный режим работы операционного усилителя. Компараторы. Триггер Шмидта. Симметричный и несимметричный мультивибраторы. Одновибратор (ждущий мультивибратор). Основные теоремы и соотношения алгебры логики. Интегральные логические элементы И, ИЛИ, НЕ. Комбинированные логические элементы И-НЕ, ИЛИ-НЕ, 2И-ИЛИ-НЕ. Функциональная полнота логических элементов. Составление логических функций и синтез логических схем. Таблицы Карно. Элементы "Равнозначность", "Неравнозначность", "Запрет". Цифровые компараторы. Сумматоры. Триггерные структуры на интегральных схемах, RS-триггер (триггер с установочными входами). Ттриггер (триггер со счетным входом). Д-триггер (триггер задержки). Универсальный ЈК-триггер. Двоичные и двоично-десятичные счетчики импульсов. Параллельные и последовательные регистры. Дешифраторы и шифраторы. Мультиплексоры и демультиплексоры. Полупроводниковые запоминающие устройства. Цифроаналоговые преобразователи (ЦАП). Аналогоцифровые преобразователи (ДДП).
P4	МИКРОПРОЦЕССОРЫ И МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ	Архитектура микропроцессорных систем. Системные шины. Шинные формирователи. Общая шина для адресов и данных. Управляющий модуль. Режим разделения времени. Запоминающие устройства. Прямой доступ к памяти. Порты вводавывода. Функциональная схема микропроцессора. Центральное процессорное устройство. Арифметико-логическое устройство. Схемы управления. Функционирование компьютера. Приоритет прерываний.

^{1.3} Программа дисциплины реализуется на государственном языке Российской Федерации (русский).

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Электронные ресурсы (издания)

Не используются

Печатные издания

- 1. Гусев В.Г. Электроника и микропроцессорная техника. М.: Высшая школа, 2006, 798 с.
- 2. Петров К.С. Радиоматериалы, радиокомпоненты, электроника. М.: «Питер», 2006 522с.
- 3. П. Хоровиц. У. Хилл. Искуство схемотехники: Пер. с англ. Изд. 7-е. М.: Мир, БИНОМ, 2011, 704с.
- 4. Г.И. Волович. Схемотехника аналоговых и аналого-цифровых электронных устройств. 2-е изд, испр. М.: Додека, 2007, 528с.
- 5. Немцов М. В.Электротехника и электроника. М.: Академия, 2013, 480с.
- 6. Молчанов А. П., Занадворов П. Н. Курс электротехники и радиотехники. М: Наука, 2011, 480с.
- 7. Гальперин М. В. Электронная техника. М: Форум, 2010, 352с.
- 8. Абрамов К. Д., Абрамов С. К. Схемотехника дифференциальных и выходных усилительных каскадов. М: ХАИ, 2007, 71 с.
- 9. Ж. Рабаи, А. Чандракасан, Б. Николич Цифровые интегральные схемы. М: ИД Вильямс, 2007, 912с.
- 10. Джонс М.Х. Электроника практический курс. Пер. с англ. М.: Мир электроники, 2006, 510 с.
- 11. Тугов Н.М., Глебов Б.А., Чарыков Н.А. Полупроводниковые приборы: Учебник для вузов. М.: Энергоатомиздат, 1990, с. 576.
- 1 Жеребцов И.П. Основы электроники. Л.: Энергоатомиздат, с. 352, 1989.
- 2 Ерофеев Ю.Н. импульсные устройства: Учеб. пособие для вузов. М.: Высшая школа, 1989, 528 с..
- 3 Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. М.: Мир,1983, 512 с.
- 4 Прянишников В.А. Электроника. Полный курс лекций. Санкт-Петербург, «Корона-принт», 2004
- 5 Гусев В.Г., Гусев Ю.М. Электроника: Учеб.пособие для вузов.- М.: Высшая школа, 1991,
- 6 622 c.
- 7 Манаев Е.И. Основы радиоэлектроники: Учеб. пособие для вузов.- М.: Радио и связь,1990, 488 с.
- 8 Степаненко И.П. Основы микроэлектроники. Москва Петербург, «Лаборатория базовых знаний», физмат, 2004.
- 9 Ровдо А.А. Схемотехника усилительных каскадов на биполярных транзисторах. М.: «Додека», 2002.
- 10 Валенко В.С. Полупроводниковые приборы и основы схематехники электронных устройств. М.: «Додека», 2001

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. Электронные ресурсы образовательного портала edu.ru.
- 2. Электронная библиотека УрФУ opac.urfu.ru
- 3. Портал информационно-образовательных ресурсов УрФУ study.urfu.ru

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
1	Лекции	Аудитория оборудована мультимедийным проектором, компьютером и экраном Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	Місгоsoft Windows 7 по программе Desktop Education ALNG LicSAPk MVL B Faculty EES. Договор 43-12/1864- 2018 от 05.12.2018 Браузер Google Chrome — свободное ПО; Браузер Mozilia Firefox — свободное ПО; МЅ Office 2007/2010 — лицензия № 42095516, срок действия — б/с «Звездный атлас Aladin»: http://aladin.u- strasbg.fr/ — свободное ПО; ПО для обработки астрономических изображений и визуализации данных «SAO Ітаде DS9»: http://ds9.si.edu/site/Home.html — свободное ПО;
2	Практические занятия	Аудитория оборудована мультимедийным проектором, компьютером и экраном Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Лаборатории, оснащенные микропроцессорной техникой, приборная база, лабораторное оборудование, материалы. Рабочее место преподавателя Доска аудиторная	Місгоsoft 7 по программе Desktop ALNG LicSAPk MVL B Faculty EES. Договор 43-12/1864- 2018 от 05.12.2018 Браузер Google Chrome — свободное ПО; Браузер Mozilia Firefox — свободное ПО; MS Office 2007/2010 — лицензия № 42095516, срок действия — б/с — свободное ПО;
3	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная	
4	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Microsoft Windows 7 по программе Desktop Education ALNG LicSAPk MVL B Faculty EES. Договор 43-12/1864- 2018 от 05.12.2018 Браузер Google Chrome — свободное ПО;

Компьютеры с подключением к сети Интернет в соответствии с количеством студентов	Браузер Mozilia Firefox — свободное ПО; «Звездный атлас Aladin»: http://aladin.u-strasbg.fr/ — свободное ПО; ПО для обработки астрономических изображений и визуализации данных «SAO Image DS9»: http://ds9.si.edu/site/Home.html — свободное ПО; MS Office 2007/2010 — лицензия № 42095516, срок действия — б/с
--	---

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Перечень примерных вопросов для зачёта/экзамена

- 1. Электрические переходы. Свойства р-п перехода.
- 2. Вольтамперная характеристика р-п перехода. Диод.
- 3. Основные технологические процессы при изготовлении полупроводниковых приборов /сплавление, диффузия, эпитаксия, фотолитография/.
- 4. Емкость р-п перехода. Варикап.
- 5. Пробой р-п перехода. Стабилитрон.
- 6. Туннельные диоды. Обращенные диоды.
- 7. Принцип действия биполярных транзисторов.
- 8. Основные конструкции биполярных транзисторов.
- 9. Схемы включения транзисторов.
- 10. Статические характеристики транзисторов.
- 11. Эквивалентная схема транзистора.
- 12. Полевые транзисторы с управляющим p-n переходом.
- 13. МОП-транзисторы со встроенным каналом.
- 14. МОП-транзисторы с индуцированным каналом.
- 15. Условные графические обозначения полупроводниковых приборов. Аналоговые электронные устройства.
- 16. Классификация усилителей, их основные параметры и характеристики.
- 17. Основные положения теории обратной связи применительно к усилителям. Обратная связь по напряжению, по току и комбинированная.
- 18. Последовательная, параллельная и смешанная схема введения обратной связи. Влияние обратной связи на коэффициент усиления.
- 19. Графоаналитический метод расчета усилительного каскада. Классы усиления.
- 20. Усилительный каскад на биполярном транзисторе с общим эмиттером.
- 21. Усилительный каскад на биполярном транзисторе с общим коллектором /эмиттерный повторитель/.
- 22. Фазоинверсный каскад.
- 23. Бестрансформаторные двухтактные каскады усиления мощности.
- 24. Дифференциальные усилительные каскады.
- 25. Операционные усилители /ОУ/, их основные параметры и характеристики.
- 26. Инвертирующий и неинвертирующий усилители на ОУ.
- 27. Схемы сумматоров сигналов на ОУ.
- 28. Вычитающие устройства на ОУ.
- 29. Избирательный усилитель на ОУ,
- 30. Интегратор и дифференциатор на ОУ.
- 31. Логарифмический и экспоненциальный усилители.
- 32. Схемы умножения и деления сигналов.
- 33. Генераторы синусоидальных колебаний. Условия возникновения автоколебаний.
- 34. LC генераторы с трансформаторной обратной связью.
- 35. RC генератор с трехзвенным Г-образным RC звеном.
- 36. RC генератор с мостом Вина.
- 37. Усилители и генераторы на туннельных диодах.
- 38. Кварцевая стабилизация частоты генераторов.
- 39. Параметры импульсного сигнала.
- 40. Импульсный режим работы операционного усилителя. Компараторы. Триггер Шмидта.

- 41. Симметричный и несимметричный мультивибраторы.
- 42. Одновибратор /ждущий мультивибратор/.
- 43. Интегральные логические элементы И, ИЛИ, НЕ.
- 44. Комбинированные логические элементы И-НЕ, ИЛИ-НЕ, 2И-ИЛИ-НЕ.
- 45. Функциональная полнота логических элементов.
- 46. Основные теоремы и соотношения алгебры логики.
- 47. Составление логических функций и синтез логических схем.
- 48. Таблицы Карно.
- 49. Элементы «Равнозначность», «Неравнозначность», «Запрет».
- 50. Цифровые компараторы.
- 51. Сумматоры.
- 52. Триггерные структуры на интегральных схемах. RS триггер /триггер с установочными входами/. Т-триггер /триггер со счетным входом/.
- 53. Д-триггер /триггер задержки/. Универсальный ЈК-триггер.
- 54. Счетчики импульсов /двоичные и двоично-десятичные/.
- 55. Параллельные и последовательные регистры.
- 56. Дешифраторы и шифраторы.
- 57. Мультиплексоры и демультиплексоры.
- 58. Цифроаналоговые преобразователи /ЦАП/.
- 59. Аналогоцифровые преобразователи /АЦП/.
- **6.1.1.** Ресурсы АПИМ УрФУ, СКУД УрФУ для проведения тестового контроля в рамках текущей и промежуточной аттестации

Не используются

- **6.1.2.** Ресурсы Φ ЭПО для проведения независимого тестового контроля Не используются
- **6.1.3.** Интернет-тренажеры

Не используются