Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н.Ельцина»

УТВЕРЖДАЮ

Проректор по учебной работе

С.Т. Князев 2019 г.

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Модуль	Код модуля
Теплотехника	

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
Энергетическое машиностроение	13.03.03/33.03
Траектория образовательной программы (ТОП)	
Направление подготовки	Код направления и уровня подготовки
Энергетическое машиностроение	13.03.03
Уровень подготовки	
высшее образование – бакалавриат	

Программа модуля составлена авторами:

№ п/п	ФИО	Ученая степень, ученое звание	Должность	Кафедра
1	Толмачёв Евгений Михайлович	Д.т.н., доцент	Профессор	Теплоэнергетики и теплотехники
2	Королёв Владимир Николаевич	Д.т.н., профес сор	Профессор, руководитель модуля	Теплоэнергетики и теплотехники

Рекомендовано учебно-методическим советом Уральского энергетического института

Протокол № 94 от 15.03.2019г.

Согласовано:

Дирекция образовательных программ

Р.Х. Токарева

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Теплотехника

1.1. Аннотация содержания модуля

Модуль «Теплотехника» включен в учебный план образовательной программы, реализуемой по самостоятельно установленному образовательному стандарту (СУОС) УРФУ, и состоит из дисциплин «Термодинамика», «Тепломассообмен», направленных на формирование основных понятий термодинамики, знаний о законах термодинамики, принципах эффективного преобразования теплоты в работу в тепловых двигателях, процессах тепломассообмена.

1.2 Структура и объем модуля

Таблица 1.

№ п/п	Перечень дисциплин модуля	Объем дисциплин модуля и всего модуля в зачетных единицах и часах	Форма итоговой промежуточной аттестации по дисциплинам модуля и в целом по модулю
1.	Термодинамика	6/216	экзамен
2	Тепломассообмен	4/144	экзамен
3	Проект по модулю	1/36	Проект по модулю
	ИТОГО по модулю:	11/396	Проект по модулю

1.3 Последовательность освоения дисциплин в модуле

Пререквизиты и постреквизиты в	Пререквизиты: дисциплина
модуле	«Термодинамика»
	Постреквизиты: дисциплина
	«Тепломассообмен»
Кореквизиты	-

1.4.Распределение компетенций по дисциплинам модуля, планируемые результаты обучения по модулю

PO-3: Способность в рамках расчетно-проектной и проектно-конструкторской деятельности составлять техническое задание на проектирование и проводить расчеты по типовым методикам с использованием стандартных средств автоматизации проектирования в соответствии с техническим заданием.

Таблица 2.

		таолица 2.
Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Термодинамика	ПК-1 — Способен рассчитывать элементы энергетических машин и установок с учетом свойств конструкционных материалов, динамических и тепловых нагрузок; ПК-3 — Способен применять в расчетах теоретические основы рабочих процессов	 Знать: основные физические свойства жидкостей и газов; законы сохранения и превращения энергии применительно к системам передачи и трансформации энергии; законы и основные физико-математические модели рабочих тел тепловых двигателей применительно к энергетическим, теплотехническим и теплотехнологическим установкам и системам;

в энергетических машинах и установках; ПК-5 – Способен выполнять гидравлические расчеты, расчеты тепловых схем, газовых схем с выбором оборудования и арматуры, аэродинамические расчеты, разрабатывать проектную документацию по отдельным узлам и элементам тепломеханического оборудования на основании задания руководителя с учетом требований к обеспечению экологической безопасности и энерго- и ресурсосбережения.

- физические основы эксперимента и способы их реализации;
- методы термодинамического расчёта и анализа циклов тепловых двигателей и энергоустановок.

Уметь:

- решать задачи, связанные с термодинамическим расчётом рабочих тел тепловых двигателей и энергоустановок;
- анализировать результаты решения конкретных задач с целью построения более совершенных схем энергоустановок;
- использовать математический аппарат и информационные технологии при проведении расчётов;
- пользоваться справочными данными и информационными базами по теплофизическим характеристикам рабочих тел и способам их обработки;
- рассчитывать ермодинамические и эксплуатационные характеристики энергетических установок;
- анализировать экономическую эффективность тепловых двигателей и энергоустановок в зависимости от их конструктивных характеристик и режимных параметров;
- производить сравнение термодинамической эффективности циклов различных тепловых двигателей.

Владеть (демонстрировать навыки и опыт деятельности):

- основами расчёта термодинамических процессов рабочих тел в элементах теплоэнергетического оборудования;
- навыками теплотехнических расчётов с применением справочной литературы;
- основными методами измерений, обработки результатов и оценки погрешности численных расчётов и экспериментальных измерений;

Знать:

- методы теплового расчета и теплового баланса различных энергоустановок;
- основные физические свойства жидкостей и газов;
- законы сохранения и превращения энергии применительно к системам передачи и трансформации теплоты;
- законы и основные физико-математические модели переноса теплоты и массы применительно к энергетическим, теплотехническим и теплотехнологическим установкам и системам;
- физические основы эксперимента и способы их реализации.

Уметь:

- решать задачи, связанные с тепловым расчетом теплообменников энергоустановок;
- анализировать результаты решения конкретных задач с целью построения более совершенных моделей;
- использовать математический аппарат и

Тепломассообмен

	_
	информационные технологии при проведении
	расчетов;
	• пользоваться справочными данными и
	информационными базами по характеристикам
	материалов и способам их обработки;
	• рассчитывать передаваемые тепловые потоки;
	• рассчитывать температурные поля (поля
	концентраций веществ) в потоках технологических
	жидкостей и газов, в элементах конструкций
	тепловых и теплотехнологических установок с
	целью интенсификации процессов
	тепломассообмена, обеспечения нормального
	температурного режима работы элементов
	оборудования и минимизации потерь теплоты;
	• измерять основные параметры объекта с помощью
	типовых измерительных приборов, оценивать
	погрешности измерений;
	• правильно оценивать результаты расчетов.
	Владеть (демонстрировать навыки и опыт деятельности):
	• основами расчета процессов тепломассопереноса в
	элементах теплотехнического и
	теплотехнологического оборудования;
	• навыками теплотехнических расчетов с
	применением справочной литературы;
	• основными методами измерений, обработки
	результатов и оценки погрешности измерений.
L	

1.5.Форма обучения Обучение по дисциплинам модуля может осуществляться в очной и заочной формах.

2. СОДЕРЖАНИЕ И ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ ДИСЦИПЛИН МОДУЛЯ 2.1.ДИСЦИПЛИНА Термодинамика

2.1.1. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 3.

Код раздела, темы	Раздел, тема дисциплины	Содержание
P1	Введение. Основные понятия и определения термодинамики	
P1.T1	Предмет и метод термодинамики	Термодинамика как наука. Техническая термодинамика. Термодинамическая система. Макроскопическое тело. Термодинамическое равновесие. Математический аппарат термодинамики.
P1.T2	Параметры состояния.	Состояние термодинамической системы. Параметры состояния термодинамической системы, их физический смысл, способы измерения. Термическое уравнение состояния. Пространство состояний.
P1.T3	Удельные параметры.	Экстенсивные и интенсивные величины. Определение удельного параметра состояния термодинамической системы.

	Термическое	
	уравнение	
P2	состояния.	
	Идеальный газ.	
	Смеси идеальных	
	газов. Термическое	Термодинамическая поверхность. Термодинамические
	уравнение	диаграммы.
P2.T1	состояния.	onacpananoi.
P2.T2	Идеальный газ.	Газовые законы. Термическое уравнение состояния
1 2.12	_	идеального газа. Газовая постоянная.
	Термодинамическа	Закон Дальтона. Парциальное давление.
P2.T3	я теория смесей нереагирующих	Приведённый объём. Способы задания смеси.
	идеальных газов	Вычисление газовой постоянной, молекулярной массы
		и плотности смеси идеальных газов <i>Термические уравнения состояния некоторых реальных</i>
		газов: Ван-дер-Ваальса, Клаузиуса, Дитеричи, Редлиха-
P2.T4	Реальные газы	Квонга, Битти – Бриджмена,
		Квонги, Витти — Бриожмени, Бенедикта — Вебба — Рубина, Лан-Бореля
D2	Первое начало	
Р3	термодинамики	
		Первое начало термодинамики как закон сохранения полной
		энергии. Классификация воздействий. Работа и теплота. Классификация термодинамических систем по свойствам
P3.T1	Общие положения	оболочки.
	D 6	Определение понятия работы в термодинамике.
D2 T2	Работа	Вычисление работы в термодинамике. Диаграмма <i>p</i> —
P3.T2	в термодинамике	V. Изображение работы в диаграмме $p-V$.
		Определение понятия теплоты в термодинамике.
		Вычисление количества теплоты. Теплоёмкость
P3.T3	Теплота	термодинамической системы. Зависимость
		теплоёмкости от различных факторов. Удельная
		теплоёмкость. Истинная и средняя теплоёмкость.
		Математическое выражение I начала термодинамики для
	I начало	неподвижных систем в интегральной и дифференциальной формах. Полный дифференциал внутренней энергии и
P3.T4	термодинамики	неполные дифференциалы
		работы и теплоты.
		Преобразование Лежандра дифференциальной формы
	D	записи І начала термодинамики. Энтальпия. Физический
P3.T5	Энтальпия.	смысл энтальпии. Полезная внешняя работа и работа
13.15	Полезная внешняя	проталкивания. Их физический смысл. Две формы записи І
	работа. Работа	начала термодинамики с
	проталкивания	использованием внутренней энергии и энтальпии.
P3.T6	Теплоёмкости	Теплоёмкости термодинамической системы при
13.10	термо-	постоянном объёме и при постоянном давлении
	динамической	
	СИСТЕМЫ	Втинистания винитрания за операции и операции
P3.T7	Внутренняя энергия,	Вычисление внутренней энергии и энтальпии идеального газа с использованием молекулярно-
	энсргия, энтальпия и	идеального газа с использованием молекулярно-кинетической теории. Теплоёмкости идеального газа при
	энтропия	постоянном объёме и при постоянном давлении.
	идеального газа	Интегрирующий множитель для дифференциала теплоты.
		Энтропия идеального газа. Диаграмма $T-s$
		. Вычисление энтропии идеального газа.
	Термодинам	·
	ические	

P4	процессы	
1.7	идеальных	
	газов	
P4.T1	Вводные замечания	Определение термодинамического процесса. Обратимые и необратимые процессы.
P4.T2	Постановка задачи	Цели и задачи термодинамического расчёта процессов. Система дифференциальных уравнений, описывающих обратимые процессы идеальных газов.
P4.T3	Политропные процессы	Определение политропного процесса. Уравнение политропного процесса в переменных <i>p-v</i> и <i>T-s</i> . Показатель политропы. Соотношения между параметрами в политропном процессе. Вычисление работы изменения объёма, полезной внешней работы и количества теплоты в политропном процессе. Теплоёмкость политропного процесса.
P4.T4	Частные случаи политропных процессов	Изохорный, изобарный, изотермический и адиабатический процессы идеальных газов. Их расчёт и изображение в термодинамических диаграммах.
P5	Второе начало термодинамики	
	Введение.	Источник теплоты. Верхний и нижний источники
P5.T1	Определения	теплоты. Тепловой двигатель (тепловая машина). Рабочее тело.
P5.T2	Общий анализ тепловых двигателей.	Первое начало термодинамики в применении к циклам тепловых двигателей. Принципиальная схема тепловой машины. Термический КПД цикла теплового двигателя.
P5.T3	Формулировки II начала термодинамики	Вечный двигатель II рода. Формулировки Томсона и Клаузиуса.
P5.T4	Работы Сади Карно	Цикл Карно. Теоремы Карно. Термический КПД цикла Карно.
P5.T5	Энтропия	Интеграл Клаузиуса. Энтропия. Неравенство Клаузиуса. Математическое выражение II начала термодинамики для обратимых и необратимых процессов. Физический смысл энтропии. Критика теории «тепловой смерти» Вселенной.
P6	Термодинамика фазовых переходов	
P6.T1	Определения	Фазы. Агрегатные состояния. Гомогенные и гетерогенные системы. Многокомпонентные системы. Химический потенциал. Фазовые переходы I и II рода.
P6.T2	Условия термодинамическо го равновесия многофазных систем	Условия термодинамического равновесия двухфазных однокомпонентных систем. Условия термодинамического равновесия трёхфазных однокомпонентных систем. Условия термодинамического равновесия многофазных многокомпонентных систем. Правило фаз Гиббса. Формула Клапейрона-Клаузиуса.
Р6.Т3	Фазовый переход «жидкость – пар»	Насыщенный пар. Влажный пар. Перегретый пар. Критическое состояние. Тройная точка. Пограничная кривая. Удельная теплота парообразования.

	Термич	Аналитическая и табличная формы представления уравнения
P6.T4	еское	состояния водяного пара.
P0.14	уравнение	Диаграммы " $p-v$ " и " $\hat{T}-s$ " для водяного пара.
	состояния	
	водяного пара	
	Термодинамически	Система уравнений, описывающая обратимые процессы реальных газов (водяного пара). Частные случаи процессов
P6.T5	й расчёт процессов водяного пара	водяного пара — изохорный, изобарный, изотермический и адиабатический. Их расчёт и изображение в диаграммах p
		$-\ v$ и $T-s$. Диаграмма $h-s$ для водяного пара.
P7	Термодинамика потока	
		Первое и второе начала термодинамики для движущихся
	П	систем. Техническая работа и работа сил трения.
P7.T1	Постановка задачи	Приближения, используемые при термодинамическом
- /	исследования	описании течения газов и паров
		в каналах. Уравнение неразрывности. Массовый расход.
		Сопло и диффузор. Скорость истечения и расход в
		адиабатически изолированных каналах. Кризис течения.
		Скорость звука. Число Маха. Закон обращения воздействий. Анализ закона обращения геометрического воздействия.
	Расчёт течения	Сужающееся сопло и сопло Лаваля. Особенности расчёта
P7.T2	газов и паров в	сопел. Учёт потерь на трение в соплах. Скоростной
F/.12	каналах.	коэффициент и коэффициент потерь энергии. Понятие о
	11001100110	расходном и тепловом соплах. Нерасчётные режимы
		течения.
		Процесс дросселирования. Эффект Джоуля – Томсона.
	Продолжирования	Дифференциальный и интегральный дроссель-эффект.
	Дросселирование	Температура инверсии. Кривая инверсии. Дросселирование
P7.T3	газов и паров	ван-дер-ваальсовского
		газа.
		Произвольный обратимый цикл. Среднеинтегральные
	T	температуры подвода и отвода тепла. Методы сравнения
	Термодина	термодинамической эффективности циклов тепловых машин:
D.O.	мический	аналитический, по площадям, по среднеинтегральным
P8	метод	температурам. Регенерация тепла. Обобщённый цикл Карно.
	исследова	Система КПД
	РИН	теплового двигателя.
	циклов	memodoco oducumeni.
	тепловых	
	двигателей	
P9	Компрессорные	
17	машины	
		Назначение и типы компрессоров. Поршневые,
	Одноступенчатый	центробежные и осевые компрессоры. Термодинамический
P9.T1	поршневой	анализ работы компрессора.
17.11	компрессор	Расчёт мощности, затрачиваемой на привод компрессора.
	Ι Γ	Учёт мёртвого пространства.
		Выбор числа ступеней компрессора. Выбор степени
P9.T2	Многоступенчаты	повышения давления в ступенях многоступенчатого
- / • I M	й компрессор	компрессора из условия минимума затрачиваемой
		мощности.
P10	Поршневые	
riu	двигатели	
	внутреннего	
	сгорания	

		Устройство, принцип действия и классификация двигателей
	07	внутреннего сгорания (ДВС). Индикаторная диаграмма.
P10.T1	Общие вопросы	Степень сжатия. Топлива, применяемые в поршневых ДВС.
		ДВС с подводом теплоты при постоянном объёме
		(карбюраторный двигатель). Его конструктивные
	\coprod икл \coprod BC V =const	характеристики. Расчёт ДВС V=Const. Йзображение цикла в
P10.T2	(Цикл Отто)	термодинамических диаграммах, его анализ.
		ДВС с подводом теплоты при постоянном давлении
		(дизельный двигатель). Его конструктивные
D40 F2	Цикл ДВС p=const	характеристики. Расчёт ДВС V = Const. Изображение цикла
P10.T3	(Цикл Дизеля)	в термодинамических диаграммах, его анализ.
	Цикл ДВС со	Расчёт ДВС p=Const. ДВС со смешанным подводом теплоты
D10 T/	смешанным	(двигатель Тринклера). Его конструктивные
P10.T4	подводом теплоты	характеристики, расчёт и изображение в
	(Цикл Тринклера)	термодинамических диаграммах.
P10.T5	Сравнение циклов	Сравнение термических КПД циклов поршневых ДВС по
110110	поршневых	различным условиям.
	двигателей	Промичество положителний из споручения с
	Циклы	Преимущества газотурбинных двигателей по сравнению с поршневыми ДВС. Классификация газотурбинных установок
P11	газотурбинных установок	поршневыми двс. классификация газотуроинных установок (ГТУ).
111	y CI all ODOR	Принципиальная схема ГТУ <i>p</i> =const. Приближения,
	ГТУ <i>p</i> =const	используемые при термодинамическом расчёте
	(расчёт)	газотурбинных установок. Изображение цикла ΓTY p =const в
	(pwe rer)	диаграммах $p-v$ и $T-s$. Конструктивные характеристики цикла.
P11.T1		Термодинамический расчёт цикла ГТУ <i>p</i> =const. Учёт
111,11		необратимых потерь в компрессоре и в турбине.
		Цикл ГТУ p =const с оптимальным отношением давлений в
	ГТУ p =const	компрессоре. Регенерация тепла в цикле ГТУ p =const. U икл
	(анализ)	ГТУ p=const с изотермическими процессами сжатия в
D11 T0		компрессоре и расширения в турбине. Цикл ГТУ p =const c
P11.T2		многоступенчатыми сжатием в компрессоре и расширением в турбине. Цикл газотурбинной установки с подводом теплоты
		при постоянном объёме ($TTVV$ =const).
	Циклы	The trooms to desire (110) consty.
P12	паросиловы	
	X	
	установок	
		Принципиальная схема паросиловой установки. Цикл Карно
		в области влажного пара. Его преимущества и недостатки.
	Цикл Карно Цикл	Цикл Ренкина в области влажного пара. Изображение цикла
	Ренкина	в диаграммах $p-v$, $T-s$, $h-s$. Цикл Ренкина на перегретом
P12.T1		паре. Его термодинамический расчёт. Вычисление расхода
		пара, расхода топлива в парогенераторе и расхода
		охлаждающей воды в
		конденсаторе.
		Влияние параметров пара на термический КПД цикла
	Анализ цикла	Ренкина. Требования к рабочему веществу цикла Ренкина.
P12.T2	Ренкина Ренкина	Цикл Ренкина с учётом необратимых потерь.
-	2 4111111111111111111111111111111111111	Цикл Ренкина с промежуточным перегревом пара. Цикл
	Способы	Ренкина с отбором пара на регенерацию. Расчёт цикла с
	повышения	регенеративными подогревателями смешивающего и
P12.T3	термического КПД	поверхностного типа. Комбинированные циклы. Парогазовые
	цикла Ренкина	циклы. Бинарные циклы. Циклы атомных электростанций.
		Термодинамические основы теплофикации.
		Теплофикационные паровые циклы. Теплофикационный
	Теплофикация	цикл с противодавлением. Теплофикационный цикл с отбором
	топлофикация	пара. Характеристики теплофикационных циклов:
P12.T4		коэффициент использования тепла пара, коэффициент
		использования тепла топлива, коэффициент теплофикации.

	Циклы		
P13	холодильных		
F13	машин и		
	тепловых насосов		
P13.T1	Обратные циклы	Обратные циклы. Обратный цикл Карно. Принципиальная схема холодильной установки. Холодопроизводительность. Холодильный коэффициент.	
P13.T2	Цикл воздушной холодильной установки	Принципиальная схема установки. Турбодетандер. Изображение цикла в термодинамических диаграммах, его расчёт и анализ.	
P13.T3	Цикл парокомпрессорно й холодильной установки	Принципиальная схема установки. Дроссельный вентиль. Требования к рабочим телам (хладагентам) парокомпрессорных холодильных установок. Цикл с влажным ходом компрессора. Цикл с сухом ходом компрессора	
P13.T4	Тепловой насос	Цикл теплового насоса. Принципиальная схема. Отопительный коэффициент. Термодинамический расчёт теплового насоса	
P14	Влажный воздух	Абсолютная и относительная влажность влажного воздуха. Влагосодержание. Точка росы. Гигрометр. Психрометр. Диаграмма h—d для влажного воздуха. Расчёт процесса сушки влажного материала	
P15	Эксергетический метод	Максимальная работа. Эксергия. Эксергия неподвижной термодинамической системы. Эксергия потока. Эксергия теплоты. Эксергетический КПД.	

2.1.2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Термодинамика

Литература

- 1. Королёв В.Н., Толмачёв Е.М. Техническая термодинамика / Учебное пособие. Екатеринбург: УГТУ–УПИ, 2007. 180 с.
- 2. Толмачёв Е.М. Техническая термодинамика. Термодинамический расчёт и анализ циклов газовых двигателей и паросиловых установок / Учебное пособие. Екатеринбург: УГТУ–УПИ, 2007. 90 с.
- 3. А.В. Островская, Е.М. Толмачёв, В.С. Белоусов, С.А. Нейская. Техническая термодинамика. В 2 ч. Ч. 1: учебное пособие / Екатеринбург: УГТУ–УПИ, 2009. 155 с.
- 4. А.В. Островская, Е.М. Толмачёв, В.С. Белоусов, С.А. Нейская. Техническая термодинамика. В 2 ч. Ч. 2: учебное пособие / Екатеринбург: УГТУ—УПИ, 2009. 106 с
- 5. Архаров, А.М. Теплотехника: учебник для втузов / А.М. Архаров, И.А. Архаров, В.Н. Афанасьев и др.; под общ. ред. А.М. Архарова, В.Н. Афанасьева. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 712 с.
- 6. . Глаголев К.В., Морозов А.Н. Физическая термодинамика / Учеброе пособие. М.: Изд-во МГУ им. Н.Э. Баумана, 2004. 272 с
 - 7. Новиков И.И. Термодинамика. М.: Машиностроение, 1984. 592 с.
 - 8. Вукалович М.П., Новиков И.И. Термодинамика. М.: Машиностроение, 1972. 672 с.
- 9. Кириллин В.А., Сычёв В.В., Шейндлин А.Е. Техническая термодинамика. М.: Наука, 1979. 512 с.

10. Новиков И.И., Воскресенский К.Д. Прикладная термодинамика и теплопередача. М.: Атомиздат, 1977. 350 с.

Методические разработки

1. Термодинамические свойства некоторых жидкостей, газов и газовых

смесей: справочно-информационные материалы по курсам: «Термодинамика», «Термодинамика и тепломассообмен», «Теоретические основы теплотехники» /В.С. Белоусов, Б.П. Жилкин, С.А. Нейская, А.В. Островская. Екатеринбург: ГОУ ВПО «УГТУ-УПИ», 2009. 32 с.

2. Техническая термодинамика: методические указания к лабораторным работам / Е.М. Толмачёв, В.С. Белоусов, Б.П. Жилкин, А.В. Островская, Г.П. Ясников. Екатеринбург: ГОУ ВПО «УГТУ-УПИ», 2006. 48 с.

Базы данных, информационно-справочные и поисковые системы

- 1. <u>www.thermophysics.ru/triptych</u> «Информационный триптих теплофизических свойств веществ» информационно-аналитическая система для хранения и распространения библиографических и численных данных о теплофизических свойствах веществ
- 2. Терминология. Теоретические основы теплотехники / В.С. Белоусов, В.Н. Королёв, Б.Г. Сапожников, Е.М. Толмачёв. Екатеринбург: УрФУ им. Б.Н. Ельцина, 2012. Учебное электронное текстовое издание: Информационный портал УрФУ http://www.ustu.ru
- 3. Е.М. Толмачёв. Техническая термодинамика. Термодинамический расчёт и анализ циклов газовых двигателей и паросиловых установок.В 3-х частях: (учебное пособие) /

Екатеринбург : УГТУ–УПИ, 2007 (Учебное электронное текстовое издание. Информационный портал ГОУ ВПО УГТУ – УПИ http://www.ustu.ru

- 4. Зональная научная библиотека: http://lib.urfu.ru
- 5. М.Ю. Иванов. Теплофизические свойства воды и водяного пара: www.parvo95
- 6. А.А. Александров, К.А. Орлов. WaterSteamPro: www.wsp.ru

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

2.1.3. *МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ* Термодинамика

Сведения об оснащенности дисциплины специализированным и лабораторным

оборудованием

№	Виды занятий	Оснащенность специальных	Перечень лицензионного
п/п		помещений и помещений для	программного обеспечения.
		самостоятельной работы	Реквизиты подтверждающего
			документа
1	Лекционные и практические занятия	Учебная мебель на 50 рабочих мест. Рабочее место преподавателя (стол, стул) Доска учебная меловая. Epson EB-X9LCD 2500lm Экран Projecta Rro RroSCREEN 213*280 Компьютер i5-3470 Кондиционер LG	"Операционная система Windows 7 — корпоративная лицензия, срок действия - б/с; Браузер Google Chrome — свободное ПО; MS Office 2013 — корпоративная лицензия, срок действия — б/с. Моzilla Firefox — свободное ПО; 7-Zip — свободное ПО; Adobe Reader XI — свободное ПО;
2	Лабораторные занятия	Электронные ресурсы: http://learn.urfu.ru, Гиперметод http://connect.urfu.ru/room_08, Комната 08 Лаборатория на 8 человек (подгруппа): Печь камерная высокотемпературная ПВК-1,4-25 Сушильный шкаф СНОЛ67/350	Nitro Pro 8; StarBoard Software 9.4; Microsoft Project профессиональный; LiteManager Pro – Server: ДИТ
		Печь муфельная ПМ-1,0-7	

Печь трубчатая ПТ-1,2-20	
Печь трубчатая ПТ-1,2-40	
Шкаф сушильный СНОЛ 24/2	
Весы электронные ВЛЭ-134	
Вытяжной шкаф	
Парты учебные - 8 шт.	
Лабораторная мебель с керамическим	
покрытием на 8 рабочих мест.	

2.2.ДИСЦИПЛИНА Тепломассообмен

2.2.1. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 3.

Код раздела, темы	Раздел, тема дисциплины	Содержание	
P1	Введение. Способы переноса теплоты в пространстве		
P1.T1	Перенос теплоты теплопроводность ю	Перенос теплоты теплопроводностью, конвекцией и излучением. Процессы теплоотдачи и теплопередачи. Температурное поле. Закон Био-Фурье - основной закон теплопроводности. Коэффициент теплопроводности. Механизм переноса теплоты в газах, жидкостях и твердых телах. Дифференциальное уравнение теплопроводности для твердого тела. Коэффициент температуропроводности. Условия однозначности.	
P2	Теплопроводност ь при стационарном режиме		
P2.T1	Теплопроводность и теплопередача через плоские стенки	Передача теплоты через одно-и многослойные плоские стенки при граничных условиях первого рода. Передача теплоты через одно-и многослойные плоские стенки при граничных условиях третьего рода. Коэффициент теплопередачи.	
P2.T2	Теплопроводность и теплопередача через цилиндрические стенки	Передача теплоты через одно-и многослойные цилиндрические стенки при граничных условиях первого рода. Передача теплоты через одно-и многослойные цилиндрические стенки при граничных условиях третьего рода. Линейный коэффициент теплопередачи. Критический диаметр тепловой изоляции.	
Р3	Интенсификация процесса теплопередачи		
P3.T1	Способы интенсификации теплопередачи	Способы интенсификации теплопередачи. Теплопередача через ребристую стенку (приближенный расчет). Распределение температуры по длине ребра. Тепловой поток, передаваемый с поверхности ребра. Уточненный расчет теплопередачи через ребристую стенку.	
P4	Теплопроводнос ть при нестационарном режиме		
P4. T1	Теплопроводность при нагревании (охлаждении) тел	Виды нестационарных процессов. Теплопроводность тонкой пластины при граничных условиях третьего рода. Анализ полученного решения, частные случаи, Физический смысл безразмерных чисел Био и Фурье. Определение количества теплоты, отдаваемого или воспринимаемого телом в процессе нестационарной	

		теплопроводности. Нагревание (охлаждение) тел конечных	
		размеров. Регулярный тепловой режим	
P5	Конвективный теплообмен		
P5.T1	Основные положения конвективного теплообмена	Виды движения жидкости. Режимы движения жидкости. Гидродинамический и тепловой пограничные слои. Физические свойства жидкости. Система дифференциальных уравнений конвективного теплообмена. Приведение дифференциальных уравнений конвективного теплообмена к безразмерному виду. Безразмерные числа Нуссельта, Рейнольдса, Прандтля, Грасгофа, Пекле. Их физический смысл. Определяющий геометрический размер и определяющая температура. Теоремы подобия.	
P5.T2	Теплоотдача при вынужденном ламинарном и турбулентном режиме движении жидкости вдоль плоской поверхности.	Определение границ ламинарного и турбулентного пограничных слоев. Интегральное уравнение теплового потока. Расчет теплоотдачи при турбулентном пограничном слое на основе гидродинамический теории теплообмена.	
P5.T3	Теплоотдача при вынужденном ламинарном и турбулентном режиме течении жидкости в трубе	Особенности течения и теплообмена в трубах. Ламинарный и турбулентный режим. Тепловая и гидродинамическая стабилизация. Вязкостный и вязкостно-гравитационный режим течения. Расчетные уравнения. Особенности теплоотдачи при течении жидкости в трубах некруглого сечения.	
P5.T4	Теплоотдача при вынужденном поперечном обтекании одиночной трубы и пучка труб	in illian o ipoison o pagar i ao ioi opognioi o	
P5.T5	Теплоотдача при свободном движении жидкости в неограниченном и ограниченном пространстве	коэффициента теплоотдачи для всего пучка труб. . Расчет теплоотдачи при свободном ламинарном и турбулентном движении жидкости вдоль вертикальной стенки в неограниченном пространстве. Теплоотдача при движении жидкости вблизи горизонтально расположенной трубы. Методика расчета теплоотдачи при свободном движении жидкости в ограниченном пространстве.	
Р6	Теплообмен при фазовых превращениях		
P6.T1	Теплоотдача при конденсации водяного пара на вертикальной поверхности и горизонтально расположенных трубах	Пленочная и капельная конденсация. Теплоотдача при конденсации сухого насыщенного пара на вертикальной поверхности при ламинарном режиме течения пленки конденсата. Теплоотдача при конденсации пара на горизонтальной трубе и пучках труб. Факторы, влияющие на теплообмен при конденсации Режимы кипения. Условия, необходимые для возникновения	
	Теплоотдача при кипении жидкости	процесса кипения. Влияние перегрева жидкости на величину коэффициента теплоотдачи. Расчетные формулы	

	n 60 m m o 67	von didayyyyayana manusa manusayya mayyayyayyayyaa	
P6 17 1		коэффициента теплоотдачи при пузырьковом режиме	
10112	кипения.		
D7	Теплообмен	мен	
P7	излучением		
		Особенности излучения и поглощения энергии твердыми,	
	Основные понятия	жидкими и газообразными средами. Виды тепловых потоков.	
		Разновидности полусферического излучения. Связь	
P7.T1		эффективного и результирующего излучения. Законы	
1 /.11		теплового излучения.	
	Теплообмен	Теплообмен излучением в замкнутой системе, состоящей из	
	излучением между	двух серых тел. Приведенная степень черноты. Средний	
P7.T2	телом и его	угловой коэффициент излучения. Частные случаи. Сложный	
	оболочкой	теплообмен.	
	Теплообменные		
P8	аппараты		
	w	Виды теплообменных аппаратов. Схемы движения	
	T	теплоносителей. Основные положения теплового расчета.	
	Тепловой расчет	Уравнение теплового баланса. Уравнение теплопередачи.	
P8. T1	рекуперативного теплообменного	Среднеинтегральный температурный напор. Сравнение	
теплообменного Среднейн тегральный те		прямоточной и противоточной схем движения теплоносителей	
	аппарата	прямоточной и противоточной слем движения теплоносителей	
P9	Массообмен		
17			
		Массовая и мольная концентрация вещества. Градиент	
		концентрации. Закон Фика. Ќоэффициент диффузии. Запись	
		закона Фика через парциальное давление. Вычисление	
	Managarray	плотности потока массы. Диффузионный пограничный слой.	
P9. T1	Молекулярный и	Уравнение массоотдачи. Аналогия между процессами тепло- и	
	конвективный	массообмена. Безразмерные числа Шервуда и Шмидта.	
	массообмен	Определение коэффициента массоотдачи.	

2.2.2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Тепломассообмен

Литература

- 1. Теплообменники энергетических установок: учебник для вузов/ К.Э. Аронсон [и др.]; под ред. проф., д-ра техн. наук Ю.М. Бродова. Екатеринбург: Сократ, 2002. 968 с.
- 2. Б.Г. Сапожников. Тепломассообмен: учебное пособие. Екатеринбург: УГТУ-УПИ, 2008. -188 с.
- 3. Ф.Ф.Цветков, Б.А. Григорьев. Тепломассообмен: учебное пособие для вузов. М.: МЭИ, 2005. 550 с.
- 4. С.С. Кутателадзе. Основы теории теплообмена. Новосибирск: Наука, 1989. 416 с.
- 5. В.Н. Королев. Тепломассообмен: учебное пособие. Екатеринбург: УГТУ-УПИ, 2006. 300 с.

Методические разработки

- 6. Тепломассообмен. Теплопроводность и конвективный теплообмен: методические указания к лабораторным работам / Л.К. Васанова, Б.Г. Сапожников, В.Н.Королев, Ю.О.Зеленкова. Екатеринбург: УГТУ-УПИ, 2010. 26 с.
- 7. Тепломассообмен. Конвективный и лучистый теплообмен: методические указания к лабораторным работам / Л.К. Васанова, Б.Г. Сапожников, В.Н.Королев, Ю.О.Зеленкова. Екатеринбург: УГТУ-УПИ, 2010. 24 с.

Электронные образовательные ресурсы

Королев В.Н., Красных В.Ю. Тепломассообмен. Основные формулы, задачи и

http://study.urfu.ru/view/aid_view.aspx?AidId=11407

Базы данных, информационно-справочные и поисковые системы

- 1. www.thermophysics.ru/triptych «Информационный триптих теплофизических свойств веществ» информационно-аналитическая система для хранения и распространения библиографических и численных данных о теплофизических свойствах веществ
- 2. Терминология. Теоретические основы теплотехники / В.С. Белоусов, В.Н. Королёв, Б.Г. Сапожников, Е.М. Толмачёв. Екатеринбург: УрФУ им. Б.Н. Ельцина, 2012. Учебное электронное текстовое издание: Информационный портал УрФУ http://www.ustu.ru
- 3. Е.М. Толмачёв. Техническая термодинамика. Термодинамический расчёт и анализ циклов газовых двигателей и паросиловых установок.В 3-х частях: (учебное пособие) /

Екатеринбург : УГТУ–УПИ, 2007 (Учебное электронное текстовое издание. Информационный портал ГОУ ВПО УГТУ – УПИ http://www.ustu.ru

- 4. Зональная научная библиотека: http://lib.urfu.ru
- 5. М.Ю. Иванов. Теплофизические свойства воды и водяного пара: www.parvo95
- 6. А.А. Александров, К.А. Орлов. WaterSteamPro: www.wsp.ru

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

2.2.3. *МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ* Тепломассообмен

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием

No	Виды занятий	Оснащенность специальных	Перечень лицензионного
п/п		помещений и помещений для	программного обеспечения.
		самостоятельной работы	Реквизиты подтверждающего
		-	документа
1	Лекционные и практические занятия	Учебная мебель на 50 рабочих мест. Рабочее место преподавателя (стол, стул) Доска учебная меловая. Epson EB-X9LCD 2500lm Экран Projecta Rro RroSCREEN 213*280 Компьютер i5-3470 Кондиционер LG Электронные ресурсы: http://learn.urfu.ru, Гиперметод http://connect.urfu.ru/room 08, Комната 08	"Операционная система Windows 7 — корпоративная лицензия, срок действия - б/с; Браузер Google Chrome — свободное ПО; MS Office 2013 — корпоративная лицензия, срок действия — б/с. Моzilla Firefox — свободное ПО; 7-Zip — свободное ПО; Adobe Reader XI — свободное ПО; Nitro Pro 8; StarBoard Software 9.4;
2	Лабораторные занятия	Лаборатория на 8 человек (подгруппа): Печь камерная высокотемпературная ПВК-1,4-25 Сушильный шкаф СНОЛ67/350 Печь муфельная ПМ-1,0-7 Печь трубчатая ПТ-1,2-20 Печь трубчатая ПТ-1,2-40 Шкаф сушильный СНОЛ 24/2 Весы электронные ВЛЭ-134 Вытяжной шкаф Парты учебные - 8 шт. Лабораторная мебель с керамическим покрытием на 8 рабочих мест.	Microsoft Project профессиональный; LiteManager Pro – Server: ДИТ