МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина» Механико-машиностроительный институт

	УТВЕРЖДАЮ
	Проректор по науке
	В.В. Кружаев
« <u></u> »	2015 г.

РАБОЧАЯ ПРОГРАММА

СВАРКА, РОДСТВЕННЫЕ ПРОЦЕССЫ И ТЕХНОЛОГИИ

Код ОП	Направление	Направленность (профиль) программы аспирантуры	Квалификация
15.06.01	Машиностроение	Сварка, родственные процессы и технологии	Исследователь. Преподаватель-исследователь

СОГ ЛАСОВАНО Управление подготовки кадров высшей квалификации Рабочая программа составлена авторами:

№	ФИО	Ученая степень, ученое звание	Должность	Кафедра	Подпись
1	Коробов Ю.С.	д.т.н., проф.	зав. каф.	Технология сварочного производства	
2	Шалимов М.П.	д.т.н., проф.	профессор	Технология сварочного производства	

Рекомендовано учебно-методическими советами:	
Председатель учебно-методического совета ММИ Протокол № от г.	Д.В Куреннов
Согласовано:	
Директор института ММИ	О.Г. Блинков
Начальник ОПНПК	О.А. Неволина

1. ОБЩАЯ ХАРАКТЕРИСТИКА ДИСЦИПЛИНЫ

Программа дисциплины составлена в соответствии с Федеральными государственными образовательными стандартами высшего образования (ФГОС ВО):

Шифр направления	Название направления/н	паправленности	образования и н Федерации об	Реквизиты приказа Министерства образования и науки Российской Федерации об утверждении и вводе в действие ФГОС ВПО		
			Дата	Номер приказа		
15.06.01	Машиностроение/ Сварка, родственные про технологии	оцессы и	29.12.2012	273		

Цели, задачи и место дисциплины в структуре учебной деятельности

Дисциплина «Перспективные технологии неорганических веществ и материалов» относится к разделу Б.1 элективной части ООП направления аспирантуры.

Цели дисциплины: приобретение знаний о закономерностях образования неразъемных соединений материалов, металлургических и физических процессах в материалах при сварке, наплавке, пайке, нанесении покрытий, термической резке и других родственных процессах. Изучение дисциплины предполагает выполнение *следующей задачи*:

- приобретение знаний, необходимых для решения задач, связанных с разработкой новых высокоэффективных ресурсосберегающих технологий соединения материалов, методов проектирования прочных и надежных сварных конструкций, сварочного оборудования, технологических и робототехнических комплексов для производства сварных изделий, методов управления параметрами технологических процессов для обеспечения стабильности качества и свойств сварных соединений;
- приобретение навыков работы с оборудованием для сварки, резки, пайки, наплавки, нанесения покрытий, склеивания.

В результате изучения курса обучающийся должен: Знать:

- современные достижения науки и передовые технологии в области получения неразъемных соединений;
- производственно-технологические режимы работы источников питания для сварки;
- основы проектирования сварных конструкций;
- способы получения неразъемного соединения, исходя из предъявляемых к ним требований по эксплуатационной надежности;

методы контроля качества неразъемных соединений.

Уметь:

- оценивать перспективные направления технологий и оборудования получения неразъемных соединений с учетом мирового опыта и ресурсосбережения;
- применять современные методы и средства исследования для решения конкретных задач сварочного производства;
- оценивать эффективность систем управления технологическими процессами сварочного производства;
- проводить работы по выбору и настройке параметров технологических процессов для обеспечения стабильности качества и свойств неразъемных соединений;
- устанавливать причины снижения качества неразъемного соединения; проводить работы по моделированию объектов и процессов получения неразъемных соединений.

Владеть:

- планированием процессов решения научно-технических задач;
- анализом работы технических средств управления параметрами технологических процессов для обеспечения стабильности качества и свойств неразъемных соединений;
- работой с системами автоматизированного проектирования конструкций с неразъемными соединениями;
- разработкой мероприятий по повышению качества неразъемных соединений и ресурсосбережению при их производстве;
- планированием эксперимента, обработки и анализа экспериментальных данных.

В результате освоения данной дисциплины аспирант должен овладеть следующими компетенциями:

универсальными компетенциями (УК):

- Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- Способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний из области истории и философии науки (УК-2);
- Готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (УК-3);
- Готовность использовать современные методы и технологии научной коммуникации на государственном и иностранном языках (УК-4);
- Способность следовать этическим нормам в профессиональной деятельности (УК-5);
- Способность планировать и решать задачи собственного профессионального и личностного развития (УК-6).

общепрофессиональными компетенциями (ОПК):

- Способность научно обоснованно оценивать новые решения в области построения и моделирования машин, приводов, оборудования, технологических систем и специализированного машиностроительного оборудования, а также средств технологического оснащения производства (ОПК-1);
- Способность формулировать и решать нетиповые задачи математического, физического, конструкторского, технологического, электротехнического характера при проектировании, изготовлении и эксплуатации новой техники (ОПК-2);
- Способность формировать и аргументировано представлять научные гипотезы (ОПК-3);
- Способность проявлять инициативу в области научных исследований, в том числе в ситуациях технического и экономического риска, с осознанием меры ответственности за принимаемые решения (ОПК-4);
- Способность планировать и проводить экспериментальные исследования с последующим адекватным оцениванием получаемых результатов (ОПК-5);
- Способность профессионально излагать результаты своих исследований и представлять их в виде научных публикаций, информационно-аналитических материалов и презентаций (ОПК-6);
- Способность создавать и редактировать тексты научно-технического содержания, владеть иностранным языком при работе с научной литературой (ОПК-7);

• Готовность к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-8).

профессиональными компетенциями (ПК):

- Способность к самостоятельному проведению научно-исследовательской работы и получению научных результатов, удовлетворяющих установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук по направленности (научной специальности) "Сварка, родственные процессы и технологии" (ПК-1);
- Разработка научных и методологических основ проектирования и создания новых технологий и оборудования сварки; механизации производства в соответствии с современными требованиями внутреннего и внешнего рынка, технологии, качества, надежности, долговечности, промышленной и экологической безопасности (ПК-2);
- Разработка научных и методологических основ повышения производительности технологий сварки и оценки их экономической эффективности (ПК-3).

Структура и распределение учебного времени

Общая трудоемкость дисциплины составляет 3 з.е. / 108 час.

		Объем времени, отведенный на освоение дисциплин модуля						
Наименования	Семестр	Аудиторные занятия час.						
дисциплин, составляющих модуль		Всего	лекции	практические	лабораторные	Самостоятельная работа час.	Аттестация по дисциплине (зачет, экзамен)	Всего час/з.е
Сварка, родственные процессы и технологии	6	4	4			104	экзамен	108/3
Всего на освоение		4	4			104		108/3

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

№ п/п	Наименование раз		Содержание
P1	Общие вопросы	P1T1	Развитие сварочной науки в России, роль кадрового потенциала, их подготовки и аттестации. Организация и управление качеством сварочной продукции. Структура и организация учебно-научных и производственных организаций. История развития сварки, работы Н.Г. Славянова, Н.Н. Бенардоса, Е.О. Патона, Б.Е. Патона, Г.А. Николаева. Российская школа сварки, принципы соединения научных и практических целей. Роль науки о сварке и сварочной технике в развитии производительных сил России. Объем фундаментальных и прикладных знаний, необходимых для успешной работы в области сварки. Математические

			методы планирования эксперимента и обработка его результатов. Компьютерные технологии в сварке.
			результатов. Компьютерные технологии в сварке. Автоматизация эксперимента. Роботизация сварочных работ.
P2	Теоретические		Природа образования соединений при сварке.
	основы сварки, наплавки и нанесения покрытий	P2T1	Классификация процессов сварки. Источники энергии для сварки, их обобщенные характеристики. Строение, виды и области применения электрической сварочной дуги. Основные процессы в столбе дуги. Напряженность поля, плотность тока и концентрации мощности в столбе. Влияние газовых потоков и пинч-эффекта на энергетические и технологические характеристики столба дуги. Физические явления в приэлектродных областях дуги. Процессы, определяющие мощность и ее концентрацию у электродов дуги. Закономерности плавления и испарения металлических электродов. Перенос металла в дуге. Общие условия устойчивости электрической дуги. Саморегулирование дуги с
			плавящимся электродом. Действие магнитных полей на дугу, их использование для управления дугой и процессами сварки. Особенности дуг, питаемых переменным и импульсным токами. Трехфазная дуга. Дуга под флюсом, дуга под водой. Сжатые дуги. Параметры режима дуговой сварки и их влияние на форму ванны и размеры шва.
		P2T2	Лучевые источники нагрева, их виды, особенности и области применения. Электронный луч, как источник энергии. Принцип сварки
			электронным лучом в вакууме. Общие схемы формирования электронных пучков. Электронные пушки, их составные части и принципы действия. Способы управления мощностью и ее концентрацией в
			электронных пучках. Управление положением пучков в пространстве. Процессы плавления металлов электронными пучками, КПД процессов. Лазерный луч как источник нагрева при сварке, резке и термической обработке. Физические процессы формирования
			излучения лазеров. Виды лазеров. Особенности газовых лазеров. Структурная схема СО2-лазера. Процессы, ограничивающие мощность СО2-лазеров и ее стабильность. Плавление металлов лазерным лучом. Достижения и проблемы электронно-лучевой и лазерной сварки.
		P2T3	Электроконтактный нагрев и плавление металлов. Физические процессы в сварочных контактах соединяемых заготовок. Принципиальные схемы сварки взрывом. Условия
			образования соединений при сварке взрывом. Физические процессы при диффузионной сварке. Механизм образования сварных соединений при диффузионной сварке. Нагрев при трении. Процессы сварки трением.
			Явления при холодной и ультразвуковой сварке. Природа

			образования соединений при пайке.
		P2T4	Основные характеристики тепловых процессов. Модели источников тепла, объектов сварки, наплавки. Дифференциальное уравнение теплопроводности,
			основные краевые условия, учитываемые при его решении. Расчет температурных полей при нагреве тел
			движущимися сосредоточенными, точечными и линейными источниками тепла. Особенности нагрева
			пластин мощными быстродвижущимися источниками. Методы расчета температурных полей при нагреве тел распределенными источниками. Вычисление скоростей
			охлаждения в различных точках тел, нагреваемых движущимися источниками. Термические циклы при
			однопроходной и многослойной сварке и наплавке. Плавление основного металла, длина жидкой ванны. Тепловая эффективность процессов сварки, наплавки и
			нанесения покрытий. Нагрев и плавление присадочных материалов.
		P2T5	Кристаллизация металла при сварке, наплавке и нанесении покрытий. Природа химической и физической неоднородности соединений металлов.
			Горячие трещины при сварке. Методы оценки сопротивляемости металлов образованию горячих
			трещин. Способы предотвращения горячих трещин. Особенности структуры зоны термического влияния в сварных соединениях. Фазовые и структурные
			превращения при сварке конструкционных сталей. Природа холодных трещин. Методы оценки
			сопротивляемости металлов образованию холодных трещин. Способы предотвращения холодных трещин. Деформации и напряжения при неравномерном нагреве.
			Механизм возникновения напряженного состояния при сварке, наплавке и нанесении покрытий. Приближенная
			теория сварочных деформаций и напряжений. Методы математического и компьютерного моделирования процессов сварки, пайки, наплавки, напыления и резки.
Р3	Технология сварки,	P3T1	Технология сварки, наплавки и нанесения покрытий плавлением
	наплавки- нанесения покрытий, пайки		Классификация процессов сварки плавлением. Технология сварки и наплавки покрытыми электродами. Технология автоматической и механизированной сварки.
	и склеивания		Наплавка и нанесение покрытий. Технология сварки низкоуглеродистых, низколегированных и среднелегированных конструкционных сталей.
			Технология сварки высоколегированных сталей и сплавов мартенситного, ферритного и аустенитного классов.
			Технология сварки разнородных сталей одного структурного класса и разных структурных классов. Технология сварки чугуна. Технология сварки меди и ее
			сплавов, алюминия, магния и их сплавов, никеля и его

			сплавов, титана и его сплавов. Особенности сварки тугоплавких и химически активных металлов. Технология сварки разнородных металлов и сплавов. Особенности технологии и техники сварки стали с алюминием, медью, титаном и их сплавами. Влияние режимов сварки на форму и состав швов. Технология наплавки. Формирование свойств наплавленного металла, метод его легирования. Технология электрошлаковой сварки и наплавки конструкций из углеродистых и легированных сталей. Технология электрошлаковой сварки легких и цветных металлов и сплавов. Особенности технологии лучевых методов сварки. Дефекты сварных соединений. Поры в сварных швах. Неметаллические включения в швах. Прочие дефекты сварных соединений.
		P3T2	Технология газопламенного и детонационного нанесения покрытий. Основные операции дуговой металлизации и плазменного напыления. Техника и технология вакуумных покрытий.
P4	Сварные конструкции	P4T1	Деформации и напряжения, вызываемые процессами сварки, наплавки и нанесения покрытий. Концентрация напряжений в сварных соединениях. Влияние дефектов на механические свойства сварных соединений и их работоспособность. Остаточные напряжения в сварных соединениях. Деформации, напряжения и перемещения в элементах сварных конструкций, экспериментальные и расчетные методы их определения. Методы снижения напряжений и деформаций при сварке и наплавке.
		P4T2	Прочность сварных соединений при статических нагрузках. Прочность при переменных нагрузках. Причины хрупких разрушений сварных конструкций. Принципы расчета и проектирования сварных соединений и конструкций. Применение компьютерной техники в расчетах и проектировании металлоконструкции. Влияние технологии изготовления балок на их несущую способность. Напряженное состояние узлов ферм. Влияние технологии изготовления решетчатых конструкций на их служебные характеристики. Напряжения и деформации в листовых конструкциях. Особенности конструкции котлов и сосудов, их напряженное состояние. Основы расчета и проектирования труб и трубопроводов. Требования и технологии изготовления емкостей и труб. Специфика сварных деталей машин. Принципы проектирования сварных конструкций из цветных металлов и пластмасс. Методы повышения прочности сварных конструкций при переменных нагрузках. Прочность сварных соединений при высоких и низких температурах. Вероятностные методы оценки прочности сварных конструкций.

P5	Механизация и		Классификация процессов и операций сварки, наплавки и
	автоматизация	P5T1	нанесения покрытий как объектов механизации и
	технологических		автоматизации. Схемы современных систем
	операций		автоматизации дуговых методов сварки и наплавки.
	сварки, наплавки		Принципы механизации и автоматизации
	и нанесения		заготовительных операций. Современные средства
	покрытий		механизации и автоматизации транспортных операций.
	1		Схемы механизированных сборочно-сварочных поточных
			линий. Автоматические сборочно-сварочные линии.
			Требования, предъявляемые к промышленным роботам
			для сварки, наплавки и нанесения покрытий. Типы
			промышленных роботов. Общие характеристики роботов
			и их основных блоков. Адаптивные роботы.
			Автоматические линии и участки роботов. Технико-
			экономическая эффективность применения роботов.
			Перспективы применения роботов в сварочном
			производстве. Система автоматизированного
			проектирования технологии сварки (САПР ТС).
			Структура САПР. Программное обеспечение и
			аппаратные средства реализации. Выход окончательной
			продукции САПР.
P6	Контроль		Методы разрушающего и неразрушающего контроля
	качества сварки,	P6T1	качества металлов, швов, наплавок и покрытий.
	наплавки и		Физические основы и разновидности магнитных и
	нанесения		электромагнитных методов контроля, техника и
	покрытий		технология их применения. Основы и классификация
			радиационных методов контроля. Источники
			рентгеновского и гамма-излучения, их конструкции,
			аппаратура и приспособления для управления.
			Радиографический контроль. Методы дозиметрии и
			обеспечения безопасности. Физические основы,
			классификация ультразвуковых методов контроля.
			Приборы и оптимальные параметры ультразвукового
			контроля. Технология ультразвукового контроля, методы
			измерения дефектов. Принципы, классификация и
			технология капиллярных методов контроля. Методы
			контроля непроницаемости.

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА УЧЕБНОГО ВРЕМЕНИ ДИСЦИПЛИНЫ ПО ТЕМАМ И ВИДАМ РАБОТ

Код раздела, темы		Объем учебного времени, отведенный на освоение дисциплины з.е./час							
	Тема, раздел дисциплины	1	Аудиторн	ые занятия					
		всего	в т.ч. лекции	в т.ч. семинар/ практ. занятия	в т.ч. лаб. раб	Самостоятельная. работа	Всего по разделам		
P1	Общие вопросы	1	1			16	17		
P2	Теоретические основы сварки, наплавки и	1	1			20	21		

	нанесения покрытий					
P3	Технология сварки, наплавки-нанесения покрытий, пайки и склеивания	1	1		16	17
P4	Сварные конструкции	1	1		16	17
P5	Механизация и автоматизация технологических операций сварки, наплавки и нанесения покрытий				16	16
P6	Контроль качества сварки, наплавки и нанесения покрытий				20	20
Итого по дисциплине		4	4		104	108

4. ТРЕБОВАНИЯ К ОЦЕНИВАНИЮ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Объективная оценка уровня соответствия результатов обучения требованиям к освоению ОП обеспечивается системой разработанных критериев (показателей) оценки освоения знаний, сформированности умений и опыта выполнения профессиональных задач.

Компоненты	Признаки уровня освоения компонентов компетенций					
компетенций	пороговый	повышенный	высокий			
Знания	Аспирант демонстрирует знание-знакомство, знание-копию: узнает объекты, явления и понятия, находит в них различия, проявляет знание источников получения информации, может осуществлять самостоятельно репродуктивные действия над знаниями путем самостоятельного воспроизведения и применения информации.	Аспирант демонстрирует аналитические знания: уверенно воспроизводит и понимает полученные знания, относит их к той или иной классификационной группе, самостоятельно систематизирует их, устанавливает взаимосвязи между ними, продуктивно применяет в знакомых ситуациях.	Аспирант может самостоятельно извлекать новые знания из окружающего мира, творчески их использовать для принятия решений в новых и нестандартных ситуациях.			
Умения	Аспирант умеет корректно выполнять предписанные действия по инструкции, алгоритму в известной ситуации, самостоятельно выполняет действия по решению типовых задач, требующих выбора из	Аспирант умеет самостоятельно выполнять действия (приемы, операции) по решению нестандартных задач, требующих выбора на основе комбинации известных	Аспирант умеет самостоятельно выполнять действия, связанные с решением исследовательских задач, демонстрирует творческое использование умений			

	числа известных методов, в предсказуемо изменяющейся ситуации	методов, в непредсказуемо изменяющейся ситуации	(технологий)
Личностные качества	Аспирант имеет низкую мотивацию учебной деятельности, проявляет безразличное, безответственное отношение к учебе, порученному делу	Аспирант имеет выраженную мотивацию учебной деятельности, демонстрирует позитивное отношение к обучению и будущей трудовой деятельности, проявляет активность.	Аспирант имеет развитую мотивацию учебной и трудовой деятельности, проявляет настойчивость и увлеченность, трудолюбие, самостоятельность, творческий подход.

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Примерный перечень контрольных вопросов для подготовки к аттестации по дисциплине (проверяемые компетенции УК-1, УК-2, УК-3, УК-4, УК-5, УК-6, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ОПК-5, ОПК-6, ОПК-7, ОПК-8, ПК-1, ПК-2, ПК-3):

- Какая из элементарных связь в твердых телах самая слабая.
- Какие зоны выделяют при изучении дуги.
- Термическая диссоциация.
- Классификация процессов сварки.
- Требования к источникам энергии для сварки.
- Технологические особенности основных процессов сварки плавлением.
- Сколько стадий образования прочных связей характерно для сварки и пайки
- Какие элементарные частицы выполняют главную роль в переносе теплоты в плазме.
- Какой из способов сварки плавящимся электродом имеет наибольший эффективный КПД нагрева изделий.
- Электрическая сварочная дуга, ее виды и области применения.
- Типы сварных соединений и швов и требования к ним.
- Саморегулирование дуги с плавящимся электродом.
- Назначение сварочных материалов. Сварочная проволока, электродные стержни и прутки, самозащитные порошковые проволоки, неплавящиеся электроды.
- Как обеспечивают активацию поверхности соединяемых деталей при пайке.
- Сварочный термический цикл.
- Действие магнитных полей на дугу, способы магнитного управления сварочной дугой.
- Явление отклонения дуги в ту или иную сторону.
- Геометрические размеры сварочной ванны.
- Металлургические процессы при сварке.
- Взаимодействие металлов при сварке.
- Технология сварки низкоуглеродистых, низколегированных и среднелегированных конструкционных сталей.
- Методы для экспериментального определения температуры при сварке.
- Кристаллизация металла шва. Природа химической и физической неоднородности сварного соединения.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

6.1. Рекомендуемая литература

6.1.1. Основная литература

- 1. Козловский, Сергей Никифорович Введение в сварочные технологии: учебное пособие / С. Н. Козловский СПб. : Лань, 2011 416 с. : ил.
- 2. Смирнов, Иван Викторович Сварка специальных сталей и сплавов: учебное пособие / И. В. Смирнов 2-е изд., испр. и доп. СПб. : Лань, 2012 272 с. : ил.
- 3. Теория сварочных процессов: Учебник для вузов / А.В. Коновалов, А.С. Куркин, Э.Л. Макаров, В.М. Неровный, Б.Ф. Якушин; Под ред. В.М. Неровного. М.: Изд-во. МГТУ им. Н.Э. Баумана, 2007. 752 с.: ил.
- 4. Смирнов, И. В. Сварка специальных сталей и сплавов: учебное пособие / И. В. Смирнов 2-е изд., испр. и доп. СПб. : Лань, 2012 272 с.
- 5. Основы технологии и построения оборудования для контактной сварки: учебное пособие / А. С. Климов [и др.] 3-е изд., испр. СПб. : Лань, 2011 330 с. (Учебники для вузов. Специальная литература).
- 6. Технология сварки плавлением и термической резки металлов: учебное пособие для вузов / В. А. Фролов [и др.]; под ред. В. А. Фролова М. : Альфа-М : Инфра-М, 2011 446 с.:
- 7. Быковский, Олег Григорьевич Справочник сварщика / О. Г. Быковский, В. Р. Петренко, В. В. Пешков М.: Машиностроение, 2011 336 с.
- 8. Галушкина, Валерия Николаевна Технология производства сварных конструкций: учебник / В. Н. Галушкина 2-е изд., испр. М. : Академия, 2011 190 с. : ил.
- 9. Климов, Алексей Сергеевич Роботизированные технологические комплексы и автоматические линии в сварке: учебное пособие / А. С. Климов, Н. Е. Машнин 2-е изд., испр. и доп. СПб.: Лань, 2011 234 с.
- 10. Козловский, Сергей Никифорович Введение в сварочные технологии: учебное пособие / С. Н. Козловский СПб.: Лань, 2011 416 с.
- 11. Федосов, Сергей Александрович Основы технологии сварки: учебное пособие / С. А. Федосов, И. Э. Оськин М.: Машиностроение, 2011 125 с.: ил. (Для вузов).
- 12. Сварка и свариваемые материалы: в 3 т. Т.1. Свариваемость материалов: Справ. изд. / Под ред. Э.Л. Макарова. М.: Металлургия, 1991.
- 13. Макаров Э.Л. Холодные трещины при сварке легированных сталей. М. Машиностроение, 1981.
- 14. Еремин Е.Н. Плазменно-дуговые технологические процессы в сварочном производстве. Учеб. пособие. Омск: Изд-во ОмГТУ, 2000.
- 15. Теория, технология и оборудование диффузионной сварки: Учебник для вузов /В.А. Бачин, В.Ф. Квасницкий, Д.И. Котельников и др.; под ред. В.А. Бачина. М.: Машиностроение, 1991.
- 16. Сварка трением: Справочник /Под ред. В.К. Лебедева, И.А. Черненко, В.И. Вилля. Л.: Машиностроение. 1987.
- 17. Машиностроение: Энциклопедия /Ред. совет: К.В. Фролов (пред.) и др. М.: Машиностроение. Оборудование для сварки. Т.4-6 / В.К. Лебедев, С.И. Кучук-Яценко, А.И. Чвертко и др.; Под. ред. Б.Е. Патона. 1999.
- 18. Стеклов О.И. Стойкость материалов от конструкции коррозий под напряжением. М.: Машиностроение, 1990.
- 19. Волков С.С., Гирш В.И. Склеивание и напыление пластмасс. М.: Химия, 1988.
- 20. Оборудование для контактной сварки: Справочное пособие /Под ред. В.В. Смирнова. СПб.: Энергоатомиздат, 2000.
- 21. Сварка в самолетостроении: Учеб. пособие / В.А. Саликов, М.Н. Шушпанов, А.Б. Коломенский и др. Воронеж. Изд-во ВГТУ, 2001.

- 22. Николаев Г.А., Куркин С.А., Винокуров В.А. Сварные конструкции. Прочность сварных соединений и деформаций конструкций. М.: Высш. школа. 1982.
- 23. Николаев Г.А., Винокуров В.А., Сварные конструкции. Расчет и проектирование: Учебник для вузов. М.: Высш. школа, 1990.
- 24. Куркин С.А., Николаев Г.А. Сварные конструкции. Технология изготовления, механизация, автоматизация: Учебник для вузов. М.: Высш. школа. 1991.
- 25. Сварные конструкции. Механика разрушения и критерии работоспособности / В.А. Винокуров, С.А. Куркин, Г.А. Николаев; Под ред. Б.Е. Патона. М.: Машиностроение, 1996.
- 26. Львов Н.С., Гладков Э.А. Автоматика и автоматизация сварочных процессов. М.: Машиностроение, 1982.
- 27. Алешин Н.П., Щербинский В.Г. Контроль качества сварочных работ. М.: Высш. школа, 1986.
- 28. Щербинский В.Г., Алешин Н.П. Ультразвуковой контроль сварных соединений.—3-е изд., перераб. и доп. М.: Изд-во МГТУ, 2000.

6.1.2. Дополнительная литература

- 1. Зуев И.В. Обработка материалов концентрированными потоками энергии. М.: Издательство МЭИ, 1998.
- 2. Волков С.С., Черняк Б.Я. Сварка пластмасс ультразвуком. М.: Химия, 1986.
- 3. Лашко С.В., Врублевский Е.И. Технология пайки изделий в машиностроении: Справочник проектировщика. М.: Машиностроение. 1993.
- 4. Волков С.С. Сварка и склеивание полимерных материалов: Учеб. пособие для вузов. М.: Химия, 2001.
- 5. Холопов Ю.В. Ультразвуковая сварка пластмасс и металлов.- Л.: Машиностроение, 1988.
- 6. Хасун А., Моригаки О. Наплавка и напыление / Пер. с японского под ред. В.В. Степина М.: Машиностроение, 1985.
- 7. Кудинов В.В., Бобров Г.Д. Нанесение покрытий напылением. Теория, технология и оборудование: Учеб. для вузов. М.: Металлургия.1992.
- 8. Потапьевский А.Г., Сараев Ю.Н., Чинахов Д.А. Сварка сталей в защитных газах плавящимся электродом. Техника и технология будущего // Монография ; Юргинский технологический институт. Томск: Изд-во Томского политехнического университета, 2012. 208 с.

6.2. Электронные образовательные ресурсы

Зональная научная библиотека http://lib.urfu.ru

Каталоги библиотеки http://lib.urfu.ru/course/view.php?id=76

Электронный каталог http://opac.urfu.ru

Электронно-библиотечные системы http://lib.urfu.ru/mod/resource/view.php?id=2330

Электронные ресурсы свободного доступа http://lib.urfu.ru/course/view.php?id=75

Электронные ресурсы по подписке http://lib.urfu.ru/mod/data/view.php?id=1379

6.3. Программное обеспечение

Microsoft office (Word, Excel, Power point)

Adobe Reader

Isis Draw

Chem office 2010 (ChemDraw, Chem3D)

enCIFer

Mercury

Пакет программ для научных исследований MATCAD.

6.4. Базы данных, информационно-справочные и поисковые системы

ScienceDirect: http://www.sciencedirect.com; Web of Science: http://apps.webofknowledge.com;

Scopus: http://www.scopus.com;

Reaxys: http://reaxys.com

Поисковая система EBSCO Discovery Service http://lib.urfu.ru/course/view.php?id=141

Федеральный институт промышленной собственности http://www1.fips.ru

Интеллектуальная поисковая система Нигма.РФ . режим доступа: http://www.nigma.ru

7. УЧЕБНО-МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Уральский федеральный университет имеет специальные помещения для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования. Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления информации большой аудитории.

Уральский федеральный университет имеет материально-техническое обеспечение, необходимое для реализации программы аспирантуры, обеспечения дисциплин (модулей), научно-исследовательской работы и практик, в соответствии с требованиями к материально-техническому и учебно-методическому обеспечению направленности программы.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ В ПРОГРАММЕ ДИСЦИПЛИНЫ

Номер листа изменений	Номер протокола	Дата заседания	Всего листов в документе	Подпись ответственного за внесение изменений