МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» Физико-технологический институт

	УТВЕРЖДАЮ
-	Проректор по науке
	В.В. Кружаев
<u>«</u> »	2016 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕХНОЛОГИЯ МАТЕРИАЛОВ СОВРЕМЕННОЙ ЭНЕРГЕТИКИ

Перечень сведений об образовательной программе	Учетные данные
Образовательная программа	Код ОП
Технология редких, рассеянных и радиоактивных	18.06.01
элементов	
Направление подготовки	Код направления и уровня
Химическая технология	подготовки
Уровень образования	18.06.01
Подготовка кадров высшей квалификации	
Квалификация, присваиваемая выпускнику	Реквизиты приказа Минобрнауки РФ
Исследователь. Преподаватель - исследователь	об утверждении ФГОС ВО:
ΦΓΟC	№ 883 от 30.07.2014 г.,
	изменения № 464 от 30.04.2015 г.

СОГ ЛАСОВАНО Управление подготовки кадров высшей квалификации Рабочая программа составлена авторами:

№	ФИО	Ученая степень, ученое звание	Должность	Кафедра	Подпись
1	Ямщиков Л.Ф.	д.х.н., проф.	профессор	редких металлов и наноматериалов	

Рекомендована Учебно-методическим советом института

Председатель учебно-методического совета ФТИ

В.В. Зверев

Согласовано:

Начальник ОПНПК

О.А. Неволина

1. ОБЩАЯ ХАРАКТЕРИСТИКА ДИСЦИПЛИНЫ

Программа дисциплины составлена в соответствии с Федеральными государственными образовательными стандартами высшего образования (ФГОС ВО):

_ 1	1 \			
Шифр направления	Название направления/направленности	Реквизиты приказа Министерства образования и науки Российской Федерации об утверждении и вводе в действие ФГОС ВО		
		Дата	Номер приказа	
18.06.01	Химическая технология / Технология редких, рассеянных и радиоактивных элементов	30.07.2014 с изменениями от 30.04.2015	883 изменения 464	

Цели, задачи и место дисциплины в структуре учебной деятельности

Дисциплина «Технология материалов современной энергетики» относится к вариативной части по выбору части ОП ВО направления аспирантуры.

Цели дисциплины: Основной целью дисциплины является формирование у аспирантов компетенций в области основных материалов современной инновационной энергетики.

Изучение дисциплины предполагает решение следующей задачи:

- изучение химических, физических и ядерных свойств урана, плутония, основ химической технологии переработки уранового сырья с получением богатых урановых концентратов, а также химической технологии переработки отработавшего ядерного топлива.

В результате освоения курса обучающийся должен:

Знать:

- место и роль химической технологии урана, плутония, других актинидов в развитии науки, техники и технологии, производства инновационных материалов современной энергетики;
- особенности и специфики уранового производства, источниках сырья и его влияния на окружающую среду:
- пути решения проблем замыкания ядерного топливного цикла;
- тенденции развития ядерных технологий, в первую очередь, малоотходные и безопасные технологии. Уметь:
- анализировать технологические схемы получения энергоемких соединений;
- получать, обрабатывать и интерпретировать экспериментальные данные;
- проводить химические и физические эксперименты, радиометрические и дозиметрические измерения, корректно обрабатывать экспериментальные данные;
- обеспечивать безопасное проведение работ с использованием радиоактивных веществ в открытом виде и оценивать поглощенную дозу за счет внутреннего и внешнего облучения;
- принимать решения в ситуациях риска.

Владеть:

- методами составления тепловых и материальных балансов химических аппаратов и установок производства редких, рассеянных и радиоактивных элементов;
- методами кинетического анализа и моделирования химических реакторов конкретных процессов химической технологии редких, рассеянных и радиоактивных элементов;
- методами оценки риска и определения мер по обеспечению безопасности разрабатываемых инновационных технологий:
- навыками разработки законченных проектно-конструкторских работ;
- навыками работы с научной литературой с целью определения направления исследования и решения спецзадач.

В результате освоения данной дисциплины аспирант должен овладеть следующими компетенциями:

общепрофессиональными компетенциями (ОПК):

- способность и готовность к организации и проведению фундаментальных и прикладных научных исследований в области химических технологий (ОПК-1);
- владение культурой научного исследования в области химических технологий, в том числе с использованием новейших информационно-коммуникационных технологий (ОПК-2):
- способность и готовность к использованию лабораторной и инструментальной базы для получения научных данных (ОПК-5).

профессиональными компетенциями (ПК): научно-исследовательская деятельность:

- способность к самостоятельному проведению научно-исследовательской работы и получению научных результатов, удовлетворяющих установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук по направленности (научной специальности) 05.17.02 Технология редких, рассеянных и радиоактивных элементов (ПК-1);
- готовность представлять научные результаты по теме диссертационной работы в виде публикаций в рецензируемых научных изданиях, докладов на научных конференциях, рецензировать и редактировать научные статьи в области технологии редких, рассеянных и радиоактивных элементов (ПК-2).

Структура и распределение учебного времени

Общая трудоемкость дисциплины составляет 3 з.е. / 108 час.

		Объем времени, отведенный на освоение дисциплин модуля							
		Аудиторные занятия час.							
Наименования дисциплин, составляющих модуль	Семестр	Всего	лекции	практические	лабораторные	Самостоятельная работа час.	Аттестация по дисциплине (зачет, экзамен)	Всего час/з.е	
Технология материалов современной энергетики	5	8	4	4		104	зачет	108/3	
Всего на освоение		8	4	4		104		108/3	

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

№ п/п	Наименование разделов и тем дисциплины		Солепузние		Содержание
P1	Введение	P1T1	Роль ядерной энергетики в развитии общества. Конструкционная схема ядерной энергетической установки. Классификация и виды ядерных реакторов. Физические основы работы ядерных энергетических установок.		

	Способы получения ядерного топлива	P2T1	Основные виды и характеристики ядерного топлива. Способы разделения изотопов урана. Исходные материалы для производства ядерного топлива. Оболочки тепловыделяющих элементов.
P2		P2T2	Способы получения оксидного керамического ядерного топлива. Способы получения смешанного оксидного топлива. Способы получения нитридного топлива.
		P2T3	Способы получения металлического топлива. Карбидное топливо и способы его получения. СНУП топливо. СНУП-Н топливо.
		P2T4	Топливные композиции жидкосолевых реакторов.
	Характеристика отработавшего ядерного	P3T1	Характеристики тепловыделяющих элементов (ТВЭЛ) и тепловыделяющих сборок (ТВС). Общая характеристика процессов вскрытия отработавших ТВЭЛов.
P3	топлива (ОЯТ). Цели и задачи переработки ОЯТ. Способы вскрытия и растворения ОЯТ	P3T2	Состав ОЯТ различного типа ядерных энергетических установок.
		РЗТЗ	Задачи радиохимической технологии. Замкнутый ядерный топливный цикл. Хранение и транспортирование ОЯТ АЭС.
	Водные методы переработки ОЯТ	P4T1	Поведение основных компонентов ОЯТ (урана, плутония и нептуния) в азотнокислых растворах. Критические параметры водных систем.
P4		P4T2	Осадительные методы переработки ОЯТ.
		P4T3	Экстракционные методы переработки ОЯТ.
		P5T1	Фторидно-газовые технологии регенерации ОЯТ.
	Неводные	P5T2	Использование жидких солей и металлов при переработке ОЯТ.
P5	методы переработки ОЯТ	P5T3	Пирохимические способы переработки ОЯТ в солевых расплавах.
		P5T4	Другие неводные методы переработки ОЯТ.
		P5T5	Обращение с отходами пирохимической переработки ОЯТ.

P6	Перспективные способы переработки ОЯТ	P6T1	Альтернативные экстракционные технологии переработки ОЯТ.
		P6T2	Основные направления совершенствования существующих технологий переработки ОЯТ.
	Аппаратурно- технологическое оформление процессов производства и переработки ядерного топлива	P7T1	Оборудование для фабрикации ядерного топлива.
P7		P7T2	Оборудование для рефабрикации ядерного топлива.

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА УЧЕБНОГО ВРЕМЕНИ ДИСЦИПЛИНЫ ПО ТЕМАМ И ВИДАМ РАБОТ

		Объем учебного времени, отведенный на освоение дисциплины з.е./час						
rembi		Ay	<i>д</i> иторн	ые занят	ия		М	
Код раздела, темы	Тема, раздел дисциплины	всего	в т.ч. лекции	в т.ч. семинар/ практ. занятия	в т.ч. лаб. раб	Самостоятельная работа	Всего по разделам	
P1	Введение	0,5	0,5			12	12,5	
P2	Способы получения ядерного топлива	0,5	0,5			12	12,5	
P3	Характеристика отработавшего ядерного топлива (ОЯТ). Цели и задачи переработки ОЯТ. Способы вскрытия и растворения ОЯТ.	1	1			14	15	
P4	Водные методы переработки ОЯТ	2	1	1		16	18	
P5	Неводные методы переработки ОЯТ	2	1	1		16	18	
P6	Перспективные способы переработки ОЯТ	1		1		16	17	
P7	Аппаратурно-технологическое оформление процессов производства и переработки ядерного топлива	1		1		14	15	
Итого	по дисциплине	8	4	4	0	100	108	

4. ТРЕБОВАНИЯ К ОЦЕНИВАНИЮ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Объективная оценка уровня соответствия результатов обучения требованиям к освоению ОП обеспечивается системой разработанных критериев (показателей) оценки освоения знаний, сформированности умений и опыта выполнения профессиональных задач.

Компоненты	Признаки уровня освоения компонентов компетенций					
компетенций	пороговый	повышенный	высокий			
Знания	Аспирант демонстрирует знание-знакомство, знание-копию: узнает объекты, явления и понятия, находит в них различия, проявляет знание источников получения информации, может осуществлять самостоятельно репродуктивные действия над знаниями путем самостоятельного воспроизведения и применения информации.	Аспирант демонстрирует аналитические знания: уверенно воспроизводит и понимает полученные знания, относит их к той или иной классификационной группе, самостоятельно систематизирует их, устанавливает взаимосвязи между ними, продуктивно применяет в знакомых ситуациях.	Аспирант может самостоятельно извлекать новые знания из окружающего мира, творчески их использовать для принятия решений в новых и нестандартных ситуациях.			
Умения	Аспирант умеет корректно выполнять предписанные действия по инструкции, алгоритму в известной ситуации, самостоятельно выполняет действия по решению типовых задач, требующих выбора из числа известных методов, в предсказуемо изменяющейся ситуации	Аспирант умеет самостоятельно выполнять действия (приемы, операции) по решению нестандартных задач, требующих выбора на основе комбинации известных методов, в непредсказуемо изменяющейся ситуации	Аспирант умеет самостоятельно выполнять действия, связанные с решением исследовательских задач, демонстрирует творческое использование умений (технологий)			
Личностные качества	Аспирант имеет низкую мотивацию учебной деятельности, проявляет безразличное, безответственное отношение к учебе, порученному делу	Аспирант имеет выраженную мотивацию учебной деятельности, демонстрирует позитивное отношение к обучению и будущей трудовой деятельности, проявляет активность.	Аспирант имеет развитую мотивацию учебной и трудовой деятельности, проявляет настойчивость и увлеченность, трудолюбие, самостоятельность, творческий подход.			

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Примерный перечень контрольных вопросов для подготовки к аттестации по дисциплине (проверяемые компетенции ОПК-1, ОПК-2, ОПК-5, ПК-1, ПК-2):

- 1. Топливные материалы в ядерной энергетике.
- 2. Влияние глубины выгорания и выдержки облученного ядерного топлива на его химический и изотопный состав.
- 3. Перспективные топливные циклы энергетических реакторов.
- 4. Регенерация урана и плутония из отработавших ТВЭЛов ядерных реакторов.
- 5. Основные проблемы и современное состояние безопасности предприятий ядерного топливного цикла России.
- 6. Тепловыделяющие элементы ядерных реакторов.

- 7. Хранение и захоронение радиоактивных отходов.
- 8. Поведение ядерного топлива при облучении.
- 9. Переработка нитридного ядерного топлива.
- 10. Уран-232 и его влияние на радиационную обстановку в ядерном топливном цикле.
- 11. Разработка и перспективы использования DUPIC-технологии.
- 12. Фракционирование и трансмутация долгоживущих радионуклидов.
- 13. Роль ядерной энергетики в развитии общества.
- 14. Конструкционная схема ядерной энергетической установки.
- 15. Классификация и виды ядерных реакторов.
- 16. Физические основы работы ядерных энергетических установок.
- 17. Основные виды и характеристики ядерного топлива.
- 18. Способы разделения изотопов урана.
- 19. Исходные материалы для производства ядерного топлива.
- 20. Оболочки тепловыделяющих элементов.
- 21. Способы получения оксидного керамического ядерного топлива.
- 22. Способы получения смешанного оксидного топлива.
- 23. Способы получения нитридного топлива.
- 24. Способы получения металлического топлива.
- 25. Карбидное топливо и способы его получения.
- 26. СНУП и СНУП-Н топливо.
- 27. Топливные композиции жидкосолевых реакторов.
- 28. Характеристики тепловыделяющих элементов и тепловыделяющих сборок.
- 29. Общая характеристика процессов вскрытия отработавших ТВЭЛов.
- 30. Состав ОЯТ различного типа ядерных энергетических установок.
- 31. Организация замкнутого ядерного топливного цикла.
- 32. Хранение и транспортирование ОЯТ АЭС.
- 33. Поведение основных компонентов ОЯТ (урана, плутония и нептуния) в азотнокислых растворах.
- 34. Критические параметры водных систем.
- 35. Осадительные методы переработки ОЯТ.
- 36. Экстракционные методы переработки ОЯТ.
- 37. Фторидно-газовые технологии регенерации ОЯТ.
- 38. Пирохимические способы переработки ОЯТ в солевых расплавах.
- 39. Фракционирование ядерных отходов.
- 40. Поведение основных компонентов ОЯТ (урана, плутония и нептуния) в азотнокислых растворах.
- 41. Критические параметры водных систем.
- 42. Использование жидких солей и металлов при переработке ОЯТ.
- 43. Основные направления совершенствования существующих технологий переработки ОЯТ.
- 44. Оборудование для фабрикации ядерного топлива.
- 45. Оборудование для рефабрикации ядерного топлива.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

6.1. Рекомендуемая литература

6.1.1. Основная литература

- 1. Андреев Г.Г., Дьяченко А.Н. Введение в химическую технологию ядерного топлива: Учебное пособие. Томск: ТПУ, 2010. 165 с.
- 2. Горюнов А.Г. Математическое моделирование технологических процессов водно-экстракционной переработки ядерного топлива: Учебное пособие. Томск: ТПУ, 2011. 237 с.
- 3. Закгейм А.Ю. Общая химическая технология. Введение в моделирование химикотехнологических процессов. Учебное пособие. М.: Логос, 2012. 304 с.

- 4. Чемезов В.А., Бекетов А.Р., Баранов М.В., Каримов Р.С. Оборудование для фабрикации ядерного топлива. Екатеринбург: «Атомэнергопром», 2011. 103 с.
- 5. Лебедев В.М. Технология ядерных материалов. Записки технолога. М.: Машиностроение, 2011. –416 с.
- 6. Чемезов В.А., Бекетов А.Р., Баранов М.В., Каримов Р.С. Оборудование для регенерации и рефабрикации ядерного топлива. Екатеринбург: «Атомэнергопром», 2011. 145 с.

6.1.2. Дополнительная литература

- 1. Бойко В.И. Кошелев Ф.П. Ядерный топливный цикл. Проблемы, решения. Томск: ТПУ, 2004, 105 с.
- 2. Скачек М.А. Обращение с отработавшим ядерным топливом и радиоактивными отходами АЭС. М.: МЭИ, 2007, 448 с.
- 3. Бойко В.И., Колпаков Г.Н., Селиваникова О.В. Топливные материалы в ядерной энергетике, Томск: ТПУ, 2008, 186 с.
- 4. Лелеков В.И. Экономика ядерной энергетики. М.: МГОУ, 2010, 120 с.
- 5. Беляев Л.А. Топливо и материалы ядерной техники. Томск: ТПУ, 2010, 275 с.
- 6. Ровный С.И., Шевцев П.П. Современное состояние и пути совершенствования радиохимической технологии выделения и очистки урана и плутония. Вопросы радиационной безопасности, 2007, № 2, с. 5-13.
- 7. Тураев Н.С., Жерин И.И. Химия и технология урана. М.: Издательский дом «Руда и металлы», 2006.
- 8. Бойко В.И., Власов В.А., Жерин И.И., Маслов А.А., Шаманин И.В. Торий в ядерном топливном цикле. М.: Издательский дом «Руда и металлы», 2006, 360 с.
- 9. Жиганов А.М., Гузеев В.В., Андреев Г.Г. Технология диоксида урана для керамического ядерного горючего. Томск: SST, 2002, 326 с.
- 10. Лебедев В.М. Ядерный топливный цикл. М.: Энергоатомиздат, 2005.
- 11. The chemistry of actinide and transactinide elements, Mors L.R., Edelstein N.M., Fuger J., eds. Vol. 1-6. Dordrecht: Springer, 2010.
- 12. Глаголенко Ю.В., Дзекун Е.Г., Ровный С.Н., Сажнов В.К., Уфимцев В.П. и др. Переработка отработавшего ядерного топлива на комплексе РТ-1: История, проблемы, перспектива // Вопросы радиационной безопасности, 1997, №2, с.3-12.
- 13. Хрусталев В.А., Сандалова Л.А. Физические и технико-экономические основы эксплуатации топлива на АЭС. Саратов: Изд-во Саратовского ГТУ, 2002, 68 с.
- 14. Зильберман Б.Я. Развитие пурекс-процесса для переработки выгоревшего топлива АЭС в замкнутом ЯТЦ с точки зрения локализации долгоживущих радионуклидов // Радиохимия, 2000, т. 42, № 1, с. 3-5.
- 15. Майоров А.А., Браверман И.Б. Технология получения порошков керамической двуокиси урана. М.: Энергоатомиздат, 1985.
- 16. Грачев А.Ф., Маершин А.А., Скиба О.В. Перспективные топливные циклы энергетических реакторов на основе неводных способов переработки облученного топлива // Атомная энергия, 2004, т. 96, вып. 5, с. 346-354.
- 17. Лавринович Ю. Г. Совместное остекловывание хлоридных и фосфатных отходов пироэлктрохимической переработки ядерного топлива // Атомная энергия, 2006, т. 101, вып. 6, с. 438-440.
- 18. Землянухин В.И., Ильенко Е.И., Кондратов А.Н. Радиохимическая переработка ядерного топлива АЭС. М.: Энергоатомиздат, 1989. 280 с.
- 19. Химическая технология облучённого ядерного горючего. Под ред. В.Б. Шевченко. М.: Атомиздат, 1971. 448 с.
- 20. Балакин И.М., Рощин А.Н. Разработка и совершенствование фильтрационного и экстракционного оборудования завода РТ-1 // Вопросы радиационной безопасности, 1997, № 2, с. 13-30.

- 21. Учияма Г., Асакура Т.И. др. Экстракционное поведение технеция и нептуния при переработке ядерного топлива // Радиохимия, 2000, т. 42, № 6, с. 488-492.
- 22. Машкин А.Н., Корпенкин К.К., Светлакова Н.А. Распределение технеция по технологическим потокам схемы пурекс завода РТ-1 // Радиохимия, 2002, т. 44, № 1, с. 34-40.
- 23. Громов Б.В., Савельева В.И., Шевченко В.Б. Химическая технология облученного ядерного топлива, М.: Энергоатомиздат, 1983, 352 с.

6.1.3. Методические разработки

1. Васин Б.Д., Волкович В.А., Неводные методы переработки облучённого ядерного топлива, Екатеринбург: УГТУ-УПИ, 2009, 79 с.

6.2. Электронные образовательные ресурсы

Зональная научная библиотека http://lib.urfu.ru

Каталоги библиотеки http://lib.urfu.ru/course/view.php?id=76

Электронный каталог http://opac.urfu.ru

Электронно-библиотечные системы http://lib.urfu.ru/mod/resource/view.php?id=2330

Электронные ресурсы свободного доступа http://lib.urfu.ru/course/view.php?id=75

Электронные ресурсы по подписке http://lib.urfu.ru/mod/data/view.php?id=1379

6.3. Программное обеспечение

Microsoft office (Word, Excel, Power point)

Adobe Reader

Пакет программ для научных исследований MATCAD.

6.4. Базы данных, информационно-справочные и поисковые системы

ScienceDirect: http://www.sciencedirect.com; Web of Science: http://apps.webofknowledge.com;

Scopus: http://www.scopus.com;

Reaxys: http://reaxys.com

Поисковая система EBSCO Discovery Service http://lib.urfu.ru/course/view.php?id=141

Федеральный институт промышленной собственности http://www1.fips.ru

Интеллектуальная поисковая система Нигма.РФ . режим доступа: http://www.nigma.ru

7. УЧЕБНО-МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Уральский федеральный университет имеет специальные помещения для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования. Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления информации большой аудитории.

Уральский федеральный университет имеет материально-техническое обеспечение, необходимое для реализации программы аспирантуры, обеспечения дисциплин (модулей), научно-исследовательской работы и практик, в соответствии с требованиями к материально-техническому и учебно-методическому обеспечению направленности программы.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ В ПРОГРАММЕ ДИСЦИПЛИНЫ

Номер листа изменений	Номер протокола	Дата заседания	Всего листов в документе	Подпись ответственного за внесение изменений