МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Института естественных наук и математики Кафедра вычислительной математики и компьютерных наук

УТВЕРЖДАЮ Проректор по науке			
В.В. Кружаев			_
2017 г.	>>	«	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, ДИНАМИЧЕСКИЕ СИСТЕМЫ И ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ

Рекомендована учебно-методическим советом института естественных наук и математики для направлений подготовки и направленностей:

Направление	Направленность	Квалификация
Математика и механика	Теоретическая механика	Исследователь. Преподаватель- исследователь

СОГ ЛАСОВАНО УПРАВЛЕНИЕ ПОДГСТОВКИ КАДРОВ ВЫСШЕЙ КВАЛИФИКАЦИИ

Екатеринбург, 2017

Рабочая программа дисциплины составлена в соответствии с Федеральными

государственными образовательными стандартами высшего образования

Код направления	Название направления	Министерств и науки Р Федерации об и вводе в дей	Реквизиты приказа Министерства образования и науки Российской Федерации об утверждении и вводе в действие ФГОС ВО				
		Дата	Номер приказа				
01.06.01	Математика и механика	30.07.14 в	866				
		ред. от 30.04.2015					

Рабочая программа дисциплины составлена авторами:

№	ФИО	Ученая степень, ученое звание	Должность	Кафедра	Подпись
	Ушаков	Д.фм.н.,		Прикладной	
1	Владимир	профессор,	Профессор	математики и	
Николаевич		чл.кор. РАН		механики	
2 П	Паттиа Валантуй			Прикладной	
	Пацко Валерий Семенович	К.фм.н., доцент	Доцент	математики и	
	Семенович			механики	
	Пименов			Вычислительной	
1		Д.фм.н.,	Son redounch	математики и	
1	Владимир	профессор	Зав.кафедрой	компьютерных	
Германович				наук	

Рабочая программа дисциплины одобрена на заседании кафедр:

№	Наименование кафедры (УМС)	Дата заседания	Номер протокола	ФИО зав. кафедрой (предс. УМС)	Подпись
1	Читающая кафедра – Вычислительной	31.08.2017	№8	В.Г. Пименов	
	математики и компьютерных наук				
2	Выпускающая кафедра – Прикладной математики и механики	15.09.2017	№6	А.Н. Сесекин	

Согласовано:

учебно-методическим советом института естественных наук и математики

Протокол № 1 от « 26 » 09 2017 года.

Председатель УМС ИЕНиМ

Е.С. Буянова.

ОБЩАЯ ХАРАКТЕРИСТИКА ДИСЦИПЛИНЫ Дифференциальные уравнения, динамические системы и оптимальное управление

1. Пререквизиты	История науки
	Методология научных исследований
2. Кореквизиты	-
3. Постреквизиты	Итоговая государственная аттестация
4. Трудоемкость дисциплины-модуля, з.е.	3

1.1.Цели дисциплины

Целями освоения дисциплины являются:

- знакомство аспирантов с типичными постановками задач управления, а также с доказательствами утверждений, характеризующих оптимальные решения в классе программных управлений и управлений по принципу обратной связи;
- используя весь комплекс фундаментальных знаний, имеющихся у аспирантов, дать на современном уровне обзор достижений в области оптимального управления, ввести аспирантов в проблематику очень важного раздела современной математики с тем, чтобы они могли изучить основные задачи, возникающие в основаниях теории и приложениях.
- способностью проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);
- готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (УК-3);
- -способностью планировать и решать задачи собственного профессионального и личностного развития (УК-5);
- -способностью самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК- 1);
- пониманием роли и места теоретической механики в механике и математике в целом,
 их связи с другими разделами механики, с математикой и другими областями науки (ПК-1);
- способностью применять и строить самостоятельно эффективные алгоритмы для решения механических задач (ПК-2);
- способностью строить математические модели механических систем, используя аппарат алгебры, математического анализа и дифференциальных уравнений (ПК-4).
- способностью применять качественные методы теории дифференциальных уравнений при анализе поведения движений механических систем (ПК-5).
- способностью ставить компьютерный эксперимент с целью выдвижения, подтверждения или опровержения научных гипотез (ПК-6).

1.2. Требования к результатам освоения дисциплины

В результате освоения дисциплины студент должен:

Знать:

- современное состояние и тенденции развития теории оптимального управления;
- возможности использования теории оптимального управления для

математического моделирования и дальнейшего использования методов теории оптимального управления в своей профессиональной деятельности;

• основные научные достижения в области оптимального управления, как фундаментальные, так и прикладной направленности.

Уметь:

- оперировать современным аппаратом теории оптимального управления;
- проводить научные исследования, используя как классические, так и современные разделы теории оптимального управления.

Владеть:

- основными теоретическими положениями оптимального управления, которые входят в программы кандидатского минимума;
- методами теории оптимального управления, использующими современный аппарат фундаментальных дисциплин, особенно математического анализа и дифференциальных уравнений.

1.3. Краткое описание дисциплины

В курсе рассматриваются типичные постановки задач управления. Приводятся доказательства утверждений, характеризующих оптимальные решения в классе программных управлений и управлений по принципу обратной связи. Существенное внимание уделяется идейной стороне вычислительных алгоритмов. Рассматриваются прикладные задачи.

Курс опирается на общеизвестные факты математического анализа и на стандартные сведения из теории обыкновенных дифференциальных уравнений. Изложение курса дает основу для изучения и понимания более специальных вопросов математической теории управления.

1.4.

Удельный вес занятий, проводимых в интерактивных формах:

Удельный вес занятий, проводимых в интерактивной форме, составляет 100% объема аудиторной нагрузки по дисциплине.

1.5. Трудоемкость освоения дисциплины

Очная форма обучения

Виды учебной работы, формы контроля	Всего, час.	Номер учебного семестра
		5
Аудиторные занятия, час.	4	4
Лекции, час.	4	4
Практические занятия, час.		
Лабораторные работы, час.		

Самостоятельная работа студентов, час.	104	104
Вид промежуточной аттестации (зачет, экзамен)	3	3
Общая трудоемкость по учебному плану, час.	108	108
Общая трудоемкость по учебному плану, з.е.	3	3

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

	2. СОД	ЕГЖАПИЕ ДИСЦИПЛИПЫ
Код разделов и тем	Раздел, тема дисциплины	Содержание
P1	Линейные управляемые системы	Принцип максимума Понтрягина для управлений, ведущих на границу множества достижимости. Принцип максимума для задач быстродействия. Синтез оптимального управления
P2	Управляемые системы общего вида	Принцип динамического программирования для задач оптимального управления. Уравнение Беллмана. Нелинейные уравнения в частных производных первого порядка. Конкретизация для задач оптимального управления.
Р3	Примеры прикладных задач с демонстрацией результатов применения методов теории управления	Задача о посадке самолета в условиях ветрового возмущения, задача об обводе препятствий, задача о преодолении самолетом препятствия по высоте, задача о восстановлении траектории самолета в условиях неточных замеров его положения. Задачи с интегральным показателем качества. Структура множеств достижимости для автомобиля Дубинса.

3. РАСПРЕДЕЛЕНИЕ ТРУДОЕМКОСТИ ОСВОЕНИЯ ДИСЦИПЛИНЫ ПО РАЗДЕЛАМ И КОНТРОЛЬНЫМ МЕРОПРИЯТИЯМ

(П O O Ч Η O Й Φ O P M 5 E O Б У

Семестр обучения: 6

Разд	дел дисциплины		на	удит ігруз ас.)	орна вка	RE	Вид	цы, ко	личе	ство	и объе	мы м	ероп	рияти	ий							, , , , , , , , , , , , , , , , , , ,			(зач.ед.).	
	(час.)				ауді	Подготовка к аудиторным занятиям (час.)					Выполнение самостоятельных внеаудиторных работ (колич.)								Подготовка к контрольным и аттестационным мероприятиям (колич.)								
Код раздела, темы	Наименование раздела, темы	Всего по разделу, теме (Beero	Лекции	Практические занятия	Побонотонин на набочи	Всего	Лекция	Практ., семинар.	Лабораторное занятие	Н/и семинар, семинар- конференция,	Всего (час.)	Домашняя работа*	Графическая работа*	Реферат, эссе, творч.	Инд. или групповой	Перевод инояз.	Расчетная работа,	Расчетно-графическая	Курсовая работа*	Курсовой проект*	Всего (час.)	Контрольная работа*	Коллоквиум*	Зачет* (при наличии	Зачет* (дифференцированный или при отсутствии экзамена)	Экзамен*
P1	Линейные управляемые системы	24	2	2			4	4				18	3									0					
P2	Управляемые системы общего вида	18	0				0					18	3									0					
Р3	Примеры прикладных задач с демонстрацией результатов применения методов теории управления	30	2	2			4	4				24	4									0					
	Всего (час):	72,0	4	4	0	0	8	8	0	0	0	60	60	0	0	0	0	0	0	0	0	0	0	0			36
* 0	Всего по дисциплине (час.):	108			-		-		-	-	-			-	-	-		-	-	-			-	-			

^{*} Суммарный объем в часах на мероприятие указывается в строке «Всего (час.):»

4. ОРГАНИЗАЦИЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ, САМОСТОЯТЕЛЬНОЙ РАБОТЫ И АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

4.1 Лабораторный практикум

Не предусмотрен.

4.2 Практические занятия

Не предусмотрены

4.3 Самостоятельная работа студентов и мероприятия текущего контроля

4.3.1. Примерный перечень тем рефератов

Не предусмотрены

4.3.2. Примерный перечень тем домашних работ

В качестве домашней работы может выступать подготовка доклада аспиранта с предшествующей исследовательской работой по следующим темам:

- 1. Применение принципа максимума Понтрягина к задачам оптимального быстродействия для материальной точки на прямой и для линейного осциллятора
- 2. Модельные задачи теории управления
- 3. Множества достижимости и интегральные воронки управляемых систем и дифференциальных включений. Алгоритмы приближённого вычисления множеств достижимости.
- 4. Алгоритмы приближённого вычисления множеств достижимости нелинейных управляемых систем с интегральными (квадратичными) ограничениями на управления.
- 5. Фундаментальная матрица Коши, ее свойства, применение для описания множества достижимости линейной управляемой системы.
- 6. Принцип максимума Понтрягина необходимое и достаточное условие для управлений, ведущих на границу множества достижимости линейной системы.
- 7. Структура управлений, ведущих на границу множества достижимости линейной системы, для типичных примеров: управляемая материальная точка на прямой, управляемый осциллятор.
- 8. Линейная задача управления с фиксированным моментом окончания и выпуклой терминальной функцией платы. Необходимое и достаточное условие оптимальности в виде принципа максимума Понтрягина. Конкретизация для случая, когда терминальная функция платы есть расстояние от заданной точки.
- 9. Задача быстродействия для линейной управляемой системы с выпуклым целевым множеством. Формула для оптимального результата. Принцип максимума Понтрягина.
- 10. Конструирование управления обратной связи на основе решения программных задач.
- 11. Принцип максимума Понтрягина для управлений, ведущих на границу множества достижимости нелинейной системы. Роль теоремы о дифференцируемости решения дифференциального уравнения по начальному состоянию при выводе принципа максимума.
- 12. Задача оптимального управления нелинейной системой с непрерывно-дифференцируемой функцией платы. Задача с интегро-терминальной функцией платы. Задача быстродействия. Принцип максимума Понтрягина необходимое условие оптимальности в этих задачах.
- 13. Множество управляемости. Связь этого понятия с понятием множества достижимости. Задача синтеза управления. Нахождение оптимального синтеза на основе анализа множеств управляемости. Оптимальный синтез для управляемой материальной точки.
- 14. Связь классического вариационного исчисления и принципа максимума Понтрягина на примере задачи с интегро-терминальным показателем. Вывод уравнения Эйлера из соотношений принципа максимума.

4.3.3. Примерный перечень тем контрольных работ

Не предусмотрены

4.3.4. Примерный перечень тем расчетных работ

Не предусмотрены

4.3.5. Примерный перечень тем расчетно-графических работ

Не предусмотрены

4.3.6. Примерная тематика коллоквиумов

Не предусмотрены

4.3.2. Примерная тематика курсового проекта (работы)

5. Не предусмотрены

5.3. Примерный перечень контрольных вопросов для подготовки к аттестации по дисциплине

- 1. Фундаментальная матрица Коши, ее свойства, применение для описания множества достижимости линейной управляемой системы.
- 2. Принцип максимума Понтрягина необходимое и достаточное условие для управлений, ведущих на границу множества достижимости линейной системы.
- 3. Структура управлений, ведущих на границу множества достижимости линейной системы, для типичных примеров: управляемая материальная точка на прямой, управляемый осциллятор.
- 4. Линейная задача управления с фиксированным моментом окончания и выпуклой терминальной функцией платы. Необходимое и достаточное условие оптимальности в виде принципа максимума Понтрягина. Конкретизация для случая, когда терминальная функция платы есть расстояние от заданной точки.
- 5. Задача быстродействия для линейной управляемой системы с выпуклым целевым множеством. Формула для оптимального результата. Принцип максимума Понтрягина.
- 6. Конструирование управления обратной связи на основе решения программных задач.
- 7. Принцип максимума Понтрягина для управлений, ведущих на границу множества достижимости нелинейной системы. Роль теоремы о дифференцируемости решения дифференциального уравнения по начальному состоянию при выводе принципа максимума.
- 8. Задача оптимального управления нелинейной системой с непрерывнодифференцируемой функцией платы. Задача с интегро-терминальной функцией платы. Задача быстродействия. Принцип максимума Понтрягина — необходимое условие оптимальности в этих задачах.
- 9. Множество управляемости. Связь этого понятия с понятием множества достижимости. Задача синтеза управления. Нахождение оптимального синтеза на основе анализа множеств управляемости. Оптимальный синтез для управляемой материальной точки.
- 10. Связь классического вариационного исчисления и принципа максимума Понтрягина на примере задачи с интегро-терминальным показателем. Вывод уравнения Эйлера из соотношений принципа максимума.

В качестве аттестации за каждый семестр учебно-научного семинара может засчитываться реферат или доклад аспиранта с предшествующей исследовательской работой.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

5.1. Рекомендуемая литература

5.1.1. Основная литература

Основная литература

- 1) Кузнецов И.Н. Методика научного исследования : Учебно-методическое пособие для магистрантов и аспирантов Минск : БГУ, 2012. 246 с.
- 2) Волков Ю.Г. Диссертация: подготовка, защита, оформление : практическое Москва : Альфа-М : ИНФРА-М, 2012. 158 с.
- 3) Лукоянов Н.Ю. Функциональные уравнения Гамильтона-Якоби и задачи управления с наследственной информацией. Екатеринбург, УрФУ, 2011.
- 4) Vasin V.V., Eremin I.I. Operators and Iterative Processes of Fejer Type. Theory and Applications. Berlin-New-York: Wolter de Grugter, 2009.
- 5) Соловьева О.Э., Мархасин В.С., Кацнельсон Л.Б., Сульман Т.Б., Васильева А.Д., Курсанов А.Г. Математическое моделирование живых систем. Екатеринбург Издательство Уральского университета, 2013.
- 6) Пименов В.Г. Разностные методы решения уравнений в частных производных с наследственностью. Екатеринбург. Издательство Уральского университета. 2014.

5.1.2. Дополнительная литература

- 1) Пацко В.С., Турова В.Л. Игра шофер-убийца: история и современные исследования. Екатеринбург: УрО РАН, 2009.
- 2) Варга Дж. Оптимальное управление дифференциальными и функциональными уравнениями. М.: Наука, 1977.
- 3) Обен Ж.-П., Экланд И. Прикладной нелинейный анализ. М.: Мир, 1988.
- 4) Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. Физматгиз, 1961.
- 5) Красовский Н.Н. Теория управления движением. М.: Наука, 1968.
- 6) Болтянский В.Г. Математические методы оптимального управления. М.: Наука, 1969.
- 7) Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972.
- 8) Благодатских В.И. Введение в оптимальное управление. М.: Высшая школа, 2001.
- 9) Куржанский А.Б. Управление и наблюдение в условиях неопределенности. М.: Наука, 1977.

5.1.3. Методические разработки

Не используется

5.2. Электронные образовательные ресурсы

Все аспиранты имеют полный доступ к перечисленным ресурсам, в т.ч. через авторизованный доступ из сети интернет:

- 1. Международный индекс научного цитирования Scopus компании Elsevier B.V.
- 2. Международный индекс научного цитирования Web of Science компании Clarivate Analytics
- 3. Журналы издательства Wiley
- 4. Электронная библиотека IEEEXPLORE Institute of Electrical and Electronics Engineers (IEEE)
- 5. Журналы American Physical Society (Американского физического общества)
- 6. Журналы Royal Society of Chemistry (Королевского химического общества)
- 7. MathSciNET реферативная база данных American Mathematical Society (Американского

- математического общества)
- 8. Патентная база компании QUESTEL
- 9. Журнал Science Online
- 10. Журнал Nature
- 11. Журналы издательства Oxford University Press
- 12. Журналы издательства SAGE Publication
- 13. Журналы Американского института физики
- 14. Журналы Института физики (Великобритания)
- 15. Журналы Оптического общества Америки
- 16. Материалы международного общества оптики и фотоники (OSA)
- 17. Журналы издательства Cambridge University Press
- 18. Научные журналы по химии Thieme Chemistry Package компании Georg Thieme Verlag KG
- 19. База данных Annual Reviews Science Collection
- 20. База данных CASC- Коллекция компьютерных и прикладных наук компании EBSCO Publishing
- 21. База данных INSPEC на платформе компании EBSCO Publishing
- 22. База данных Association for Computing Machinery (ACM)
- 23. База диссертаций ProQuest Dissertations & Theses Global Журнальные базы данных мировой научной информации Freedom Collection компании Elsevier
- 24. Информационно-аналитическая система управления научными исследованиями Pure компании Elsevier B. V.
- 25. Наукометрическая база данных Scival компании Elsevier B. V.
- 26. Аналитическая и информационная база данных REAXYS компании Elsevier,
- 27. Научные базы данных компании EBSCO Publishing: Business Source Complete и Academic Search Complete, Информационно-поисковая система EBSCO Discovery Service, IEEE All- Society Periodicals Package,
- 28. Базы данных компании East View,
- 29. Электронная библиотека диссертаций РГБ;
- 30. Информационно-аналитическая система FIRA PRO компании ООО«Первое Независимое Рейтинговое Агентство»,
- 31. Электронная система нормативно-технической документации "Техэксперт" компании КОДЕКС,
- 32. Базы данных «Интегрум Профи» компании «Интегрум медиа»,
- 33. Наукометрические базы данных Incites и Journal Citation Report компании Clarivate Analytics,
- 34. Информационно-аналитическая система SCIENCE INDEX компании «Научная электронная библиотека».

5.3. Программное обеспечение

- 1) MicrosoftWindows7
- 2) MicrosoftOffice 2010
- 3) Microsoft VISIO

5.4. Базы данных, информационно-справочные и поисковые системы

- 1. Платформа Springer Link
- 2. Платформа Nature
- 3. База данных Springer Materials
- 4. База данных Springer Protocols
- 5. База данных zbMath
- 6. База данных Nano
- 7. База данных Кембриджского центра структурных данных CSD Enterprise

5.5. Фонд оценочных средств (средства контроля учебных достижений студентов и аттестационно-педагогические измерительные материалы)

Не используется

6. УЧЕБНО-МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аспиранты кафедры вычислительной математики и компьютерных наук обеспечены специальными помещениями для проведения занятий:

- лекционного типа с наборами демонстрационного оборудования и учебно-наглядных пособий, обеспечивающих тематические иллюстрации, соответствующие примерным программам дисциплин (модулей), рабочим учебным программам дисциплин (модулей) (общеинститутские лекционные аудитории, кафедральные ауд. 613, 615);
- занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации (общеинститутские аудитории и вычислительные центры, кафедральные ауд. 613, 615, 525);
- лабораторных и научно-исследовательских работ ауд. 613, 615, 525.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ В РАБОЧЕЙ ПРОГРАММЕ

Номер протокола заседания кафедры	Дата заседания кафедры	Всего листов в документе	Подпись ответственного за внесение изменений
	протокола заседания	протокола заседания	протокола заседания заседания коформы в документе