<table>
<thead>
<tr>
<th>№ пп</th>
<th>Наименование модулей</th>
<th>Аннотация модулей</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Базовая часть</td>
<td>Модуль включает изучение дисциплины Физика твердого тела, изложение которой базируется на использовании методов теоретической физики и ориентировано на углубление имеющихся знаний и навыков в области ядерных взаимодействий, на теоретическое изучение аспектов взаимодействия излучения и заряженных частиц с веществом. Лабораторный практикум по курсу Специальные главы ядерной физики подразумевает закрепление и углубление теоретических знаний и практическое ознакомление с физикой ядерных взаимодействий, нейтронов и заряженных частиц с веществом. Методология научного познания направлена изучение закономерностей развития науки, ее истории, логики и перспектив.</td>
</tr>
<tr>
<td>2.</td>
<td>Модуль Физические основы ядерных технологий</td>
<td>В курсе предусматривается формирование навыков: самостоятельно приобретать и использовать в практической деятельности новое знание, умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности; расширять и углублять свое научное мировоззрение, в том числе с помощью знания иностранного языка; использовать знания в области гуманитарных дисциплин в профессиональной деятельности.</td>
</tr>
<tr>
<td>3.</td>
<td>Модуль Иностранный язык</td>
<td>Основная дисциплина модуля Неравновесная статистическая физика посвящена изучению неравновесных свойств разреженных газов, таких как в условиях локального равновесия, так и при его нарушениях. Центральная идея, связанная со стремлением замкнутой системы частиц к максимальному числу допустимых состояний, прослеживаются для различных неравновесных состояний на термодинамическом и статистическом уровнях описания. Фундаментальные основы нанотехнологий предполагают ознакомление магистров с основными и современными аспектами нанотехнологий, возможностями и перспективами их применения в атомной энергетике. Физика конденсированного состояния и физико-химическая кинетика также посвящены изучению основ теплофизических, термодинамических и кинетических свойств наноматериалов, материалов ядерной энергетики.</td>
</tr>
<tr>
<td>№</td>
<td>Модуль</td>
<td>Описание</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>6</td>
<td>Модуль Методы математического моделирования</td>
<td>Дисциплина методы компьютерного моделирования в теоретической физике дает полный подробный обзор имеющихся на сегодняшний день методов и средств моделирования, условия применимости и ограничения того или иного метода, а также практические навыки по их применению с помощью современных расчетных программ. Дисциплина Обработка экспериментальных данных дает практические навыки использования специализированных программных средств для обработки экспериментальных результатов и их представления в наглядном виде.</td>
</tr>
<tr>
<td>7</td>
<td>Модуль Современные языки программирования</td>
<td>Данный модуль дает обзор современных языков программирования высокого уровня и навыки их практического применения при написании программных продуктов и кодов.</td>
</tr>
<tr>
<td>8</td>
<td>Модуль Прикладные задачи теоретической физики</td>
<td>Данный модуль состоит из двух дисциплин Дополнительные главы физики нелинейных явлений и Специальные главы теории рассеения. И является одним из основных в направлении подготовки. В данных курсах магистры учатся разрабатывать и применять на практике алгоритмы численного решения прямой и обратной задач рассеяния, понимать математическое описание нелинейных явлений и получать навыки расчетов параметров нелинейных волн.</td>
</tr>
<tr>
<td>9</td>
<td>Модуль Моделирование в физике высоких плотностей энергии</td>
<td>В модуле Моделирование в физике высоких плотностей энергии студенты получают навыки решения конкретных физико-математических задач в области физики высокоземергетических процессов, физики взрыва, ударных волн, физики плазмы с использованием современных программных продуктов и вычислительных мощностей. В данном модуле предусмотрен проект, результатом которого является готовая решенная научная задача с грамотным оформлением результатов.</td>
</tr>
<tr>
<td>10</td>
<td>Модуль Методика научных исследований и публикационной активности</td>
<td>В данном модуле магистр знакомится с доступными базами публикаций, основными критериями поиска и размещения публикаций в них, учится правильно оформлять свое научное исследование, выбирать журнал или конференцию для представления научных результатов. В рамках данного модуля предусмотрен проект результатом которого будет тезисы и доклад на конференции.</td>
</tr>
<tr>
<td>11</td>
<td>Модуль Структурное упорядочение и разупорядочение материалов</td>
<td>В дисциплине Экспериментальные методы физики материалов основные положения физической химии газов и конденсированных сред, включая тепловую, механическую, электрическую, радиотехническую и оптическую свойства. Задачи изучения дисциплины Воздействие облучения на реакторные материалы и наноструктуры: создание устойчивых к воздействию различных видов наружного излучения, защита конструкций от воздействия горячих газов и твердых тел и их поведение в процессах облучения и отжига, формирование представлений о методах прогнозирования свойств облученных и облучаемых материалов.</td>
</tr>
<tr>
<td>12</td>
<td>Модуль Нейтронная физика и моделирование</td>
<td>В модуле входят дисциплины Теория переноса нейтронов в нейтронах и Нейтронные ядерные реакции, подразумевающие освоение студентами основных понятий теории ядерных реакторов и процессов, происходящих в них. А также освоение основных понятий теории кинетического уравнения Больцмана и методов расчета нейтронных потоков и цепей, приобретение навыков об основных характеристиках процессов взаимодействия нейтронов с ядрами среды, ознакомление с основами метода расчета реактора. Целью изучения дисциплины Компьютерный инженерный анализ (CAE) является освоение математического аппарата метода конечных элементов и получения практических навыков решения различных физических задач в различных средах моделирования.</td>
</tr>
<tr>
<td>13</td>
<td>Модуль Технологии работы с ядерными материалами</td>
<td>Данный модуль подразумевает комплексную подготовку в сфере учета, контроля и физической защиты ядерных материалов, ведения особого внимания критериев безопасности и оценке риска, и включает дисциплины Основы учета, контроля и физической защиты ядерных реакторов и материалов, и Динамика ядерных реакторов, критерии безопасности и оценка рисков. Модуль дополнен дисциплиной Компьютерное моделирование неравновесных процессов, посвященной изучению методов компьютерного моделирования и вычислительных методов физики для описания физико-химических процессов, важных для обеспечения безопасности.</td>
</tr>
<tr>
<td>14</td>
<td>Модуль Метод молекулярной динамики</td>
<td>В модуле магистр осваивает метод молекулярной динамики, условия и границы его применимости, а также знакомится с основными современными программными продуктами, реализующими данный метод. Большая часть курса посвящена изучению видов потенциалов взаимодействия, способов из задания и нахождения. В модуле предусмотрен проект в рамках которого обучающийся самостоятельно решает физическую задачу методом молекулярной динамики.</td>
</tr>
<tr>
<td>15</td>
<td>Модуль Метод Монте-Карло</td>
<td>В модуле магистр осваивает метод Монте-Карло, условия и границы применимости стохастических методов, а также знакомится с основными современными программными продуктами, реализующими данный метод. В этом курсе также входит раздел метод функционала плотности. Также предусмотрен проект в рамках которого обучающийся самостоятельно решает физическую задачу методом Монте-Карло.</td>
</tr>
<tr>
<td>16</td>
<td>Модуль Прикладная</td>
<td>Данный модуль состоит из нескольких разделов Теория взрываемых веществ, Метод характеристик в газодинамике и Регистрация</td>
</tr>
<tr>
<td>Гидрогазодинамика</td>
<td>быстропротекающих процессов. Изучение дисциплины дает глубокие теоретические знания и практические навыки в области актуальных проблем современной гидрогазодинамики таких как: виды и характеристики взрывчатых веществ, разрушающее действие взрыва, методики регистрации динамических процессов в веществах, параметры детонационных и ударных волн, уравнения газовой динамики и методы их решения.</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Практики, в том числе научно-исследовательская работа</td>
<td>Цель практики — закрепление, углубление и систематизация полученных студентами в университете теоретических знаний, получение и выполнение конкретных научно-исследовательских задач под руководством сотрудников профильных организаций корпорации РОСАТОМ. Приобретение опыта в профессиональной деятельности, ознакомление с организацией производственной и хозяйственной деятельности предприятий, мероприятиями по охране труда и окружающей среды, техникой безопасности, режимами допуска.</td>
<td></td>
</tr>
<tr>
<td>Государственная итоговая аттестация</td>
<td>Целью государственной итоговой аттестации является установление уровня подготовленности обучающегося, осваивающего образовательную программу бакалавриата, к выполнению профессиональных задач и соответствия его подготовки требованиям федерального государственного образовательного стандарта высшего образования и ОП по направлению подготовки, разработанной на основе образовательного стандарта.</td>
<td></td>
</tr>
<tr>
<td>Факультативы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Модуль Высокопроизводительное моделирование на графических процессорах</td>
<td>В структуре образовательной программы модуль «Высокопроизводительное моделирование на графических процессорах» относится к вариативной части по выбору студента (факультативу) и состоит из одной дисциплины — «Высокопроизводительное моделирование на графических процессорах». Модуль посвящен изучению методов высокопроизводительного вычислительного моделирования, включая поточно-параллельные вычисления на графических процессорах. Рассматриваются задачи моделирования нестационарных процессов в газах и конденсированных средах на атомном и молекулярном уровнях. Особое внимание уделено явлениям переноса и фазовым превращениям в реакторных материалах.</td>
<td></td>
</tr>
</tbody>
</table>

Руководитель ОП

В.В. Зверев